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Projectiles

in this chapter, you will learn how to:

m use Newton's equations of motion to determine results related to projectile motion

m use these results to solve problems involving projectiles from both ground level and raised
platforms

® make use of the components of the motion to understand and solve more complicated problems.




Chapter 13: Projectiles

PREREQUISITE KNOWLEDGE

Where it comes from “ What you should be able to do # Check your skills

AS & A Level | Rememberand use Newton’s l1 A cyclist is travelling along a straight horizontal
Mathematics | equations of motion. [ road at 6ms~! when he sees a red traffic light 50m
Mechanics, i I‘ ahead. He stops pedalling and applies his brakes
Chapter 1 i ! to decelerate uniformly until he stops. Find the

i L | 7 . magnitude of his deceleration. -
AS & A Level : Work with basic vectors, ‘I 2 A particle is projected from the top of a cliff with
Mathematics | such as the componentsin | initial speed 20ms" vertically upwards. The
Mechanics, | both horizontal and vertical particle lands at the bottom of the cliff, 50m below
Chapters | & 3 directions. the point from which it was projected. Find the

; \ time taken for the particle to reach the bottom of
Puse Madwaihoy | the cliff and the velocity of the particle at that ti
2&3,Chapter9 i ' € CilIT an ¢ veloClity o € particie a at iime.

| | I

What are projectiles?

A projectile is any object that, once it has been thrown, propelled or dropped, continues
to move under its own inertia and the force of gravity. We are most likely to encounter
projectiles when we play sports, when we drop things, or when we observe objects after a
collision. The apple that (allegedly) fell on Isaac Newton’s head was a projectile.

In this chapter, you will look at the motion of particles that are projected at an oblique
angle to the horizontal and/or vertical directions. The paths of these particles will

be analysed as horizontal and vertical components. Each direction can be dealt with
separately or together.

13.1 Motion in the vertical plane
In this chapter, we use the symbols a for acceleration, u for initial velocity, v for final
velocity, ¢ for time, and x for displacement. Unless stated otherwise, g=10ms™2.

You will have met Newton’s equations of motion in your earlier study of Mechanics. These
equations are valid only if the acceleration of the object is constant, usually due to the
mass of the object.

We use the same equations to derive some standard results for the motion of a projectile.

These equations are:
® s=ut+ lazz

2
® v=u-+at
o V=124 2as

(u+ vt
L=
2

o szvz—latz
2

For projectile questions, we use a simplified model of reality. This means we usually assume
there are no resisting forces such as air resistance. We model the projectile as a particle so
we can assume there are no rotational forces (spin). We also assume that the force due to
gravity is constant. The path travelled by the projectile is known as a parabolic trajectory.
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The displacement of the particle at any time is given by s=uf + %arz, a quadratic function
whose graph is a parabola.

Let us use Newton’s equations for a projectile. Consider a particle thrown with initial

velocity u at an angle @ above the horizontal direction, as shown in the diagram. The s ¢
initial velocity of the particle can be described in terms of two components: #cos ¢ g
in the horizontal direction, and usin @ in the vertical direction. These directions ()

are normally referred to in Cartesian form as x- and y-directions.

Using v=u+ at in the y-direction gives v, = usin@ — gt, and in the x-direction we
can see that v, = ucos . Remember that the acceleration due to gravity acts vertically
downwards. Taking upwards as positive, in the vertical direction, ¢ = —g and in the

horizontal direction, a = 0.
When the particle reaches its highest point v, =0, then using =gz, or = _us;r_ne Since we

can ignore air resistance, the time it takes the particle to travel from the ground to the top

of its path must be the same as the time it takes to return to the ground. This means that

the total flight time is = Q“ng 9

We will focus on the distance travelled horizontally and vertically. Let x represent the
horizontal displacement travelled, and y represent the vertical displacement travelled.

. 1
Then, using s = uf + ;atz:

X =.C08 0t Differentiating these
; I 5 two results gives
)’=usm61—igr i = HEHH,
v, = usind¢ — gr.
. 5. These are the same
2using _ 2usin0cosd . pere we can use 2sinfcosd = 2sin 26 values we have already
g g established.

Now use the value we found earlier for total flight time, to give:

x=ucosé x

u’sin20

—

This result is known as the range, and it represents the horizontal distance covered. This
value is a maximum when € = 45° and sin26 = 1. The angle at which the object is projected
is known as the angle of elevation, and is measured upwards {rom the horizontal. Please
note that the above results for the range and total flight time have been derived from the
displacement and velocity components of a projectile, which are not in the formula booklet.
It is therefore suggested that you know how to quickly derive these results when needed.

WORKED EXAMPLE 13.1

Hence, x =

A particle is projected from a point on a horizontal surface with initial speed 20ms™! at an angle of elevation of
25°. Find:

a the range of the particle b the time taken to reach the highest point
¢ the speed of the particle when 7= 0.5.

Answer

B 2.4
" “sin 26 207sin 50° ; :
a Using x= WOy x= SR Substitute the values into the formula for the

g 10 h
horizontal range.

Hence, x = 30.6m.
_using _ 20sin25

=3 Using v, = usind — gt leads to the time taken.

b At the highest point v,=0,s017

t=0.845s
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& W.=20ces25=18.126
' given time.

v, = 205025 - 10x 0.5=3.452
So the speed is V18.126% + 3.452%2 = 18.5ms™".

Determine both components of the speed at the

Find the magnitude of the resultant speed.

Particles that are projected from raised platforms can be viewed as following part of a
parabolic path.

This diagram shows a particle’s trajectory from a raised point. Trace the path backwards
to see where it would have started if it had been launched from ground level.

Consider an example where u = 15, @ = 60°, and the platform is 10m above the ground. How
would you go about finding the final speed of the projectile when it reaches ground level?

Start with v* = + 2as vertically, so v2 = (15sin60)2 — 2 x 10 x (~10). This gives us

_5V59
2

v , which is the vertical component of the speed when the particle hits the ground.

y

Next use v, =15c0s60 = 7.5, leading to v = v'v% + 2, which is equal to 5V17ms.

WORKED EXAMPLE 13.2

A particle is projected from the top of a platform 15m above the horizontal floor
below. The angle of projection is 45° and the initial speed is 25ms~!. Find:

a the exact time taken to reach the horizontal floor below
b the exact speed of the particle as it hits the floor.

Answer

Model the vertical motion.
Remember that the floor1s 15m
below the starting position.

5 sl
2
Vertically, this gives:
—15 =25¢sin 45 — 5¢2,

Rearranging we get:
T TG T
2
By gy
2

This is a quadratic equation, so

using the quadratic formula we get:

;22 £35V2
= , :
So t=342s.

Calculate the two times; one is
invalid as it is before the start of
moftion.

Note: The negative value for time
represents the time when the particle
would have started if it had been
projected from ground level.

This answer 1s given in exact form as
required by the question.

When a particle is
projected upwards,
any position below

the starting point is a
negative displacement,
Pay close attention to
negative values in your
calculations.

The question usually
states if’ the angle is
above the horizontal
(angle of elevation)

| or measured from the
vertical. When the
angle is 45°, this is not
NECESSary.
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b Using v =u+ at horizontally
and vertically gives:

v, = 25c0845 = 12.5v2

Find both components of the speed
at the required time.

v, = 25sin45 — 10 x 3v2
=-17.5V2

Hence, v = vv2 + v3 = 5vV37ms™\. Calculate the resultant in exact form.

Projectiles can, instead, be launched at an angle below the horizontal (angle of depression).

. i
\\
‘\\\ g

Y \

Let us consider a particle thrown with initial speed 40m 57!, at an angle of depression of
10°. Initially, it is at a height of 20m above horizontal ground. To determine how far the
particle travels in the horizontal direction, we must first find the time it takes to reach
ground level, then apply this value of ¢ to the horizontal displacement.

Using s =uf + %arz vertically, we have 20 =40zrsinl0 + 5¢2. Notice here we have taken the

downwards direction as positive, so s =20 and a = 10. This reduces the use of negatives so
can make the work easier when working with an angle of depression.

— 40sin10 + V(=40 sin10)? —4(5)(—20)
2(5)
Solving this equation gives two values for ¢. The value we want is positive (the projectile
starts at £ = 0) so ¢ = 1.423s. Use x = utcos = 40cos 10 x 1.423, which gives a distance of
56.0m.

WORKED EXAMPLE 13.3

This gives 5¢* + 40¢sinl0 —20=0so ¢ =

An aircraft is on a scientific data collection mission over an ocean. The aircraft is travelling horizontally at a
speed of 50ms~! when it launches a sensor at an angle of 25° below the horizontal with an initial speed of 10ms™.
Given that the plane is 1 km above the ocean, and assuming that the ocean surface is flat, find the speed of the
sensor when it is 100m from the surface of the ocean.

Assume that air resistance is negligible.

Answer

Using s = ut + lim‘z vertically and taking downwards as
positive:

900 = 10¢sin 25 + 5%, Determine the time taken to fall 900 m.

Then # + 2¢sin25-180=0 = ¢=13 Find the time taken.
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So v, =10sin25+ 10 x 13 = 134.23. Calculate the vertical component of speed using
v =u+ at vertically.

The plane is moving at the time of launch:

So v, =50+ 10cos25 = 59.06. Find the horizontal component of speed using the initial
speed of the plane and v = u + a¢ horizontally.

Hence, v=vVvi+v:=147ms™". Find the resultant speed.

‘When an object is projected with an angle of depression, choose downwards as the positive
direction. This means your vertical displacement is positive and the value of ¢ is also positive.

1 A projectile is launched from point O on horizontal ground, landing at the point 4.
a 04 =205m, 0 =40° Find the speed u.
b 6=30°u=32ms"!. Find the range OA.
€ 0A4=130m,u=40ms™". Find the possible angles of projection 6.

@ 2 Aprojectile is launched from a point on horizontal ground with speed U. Given that the horizontal distance
travelled before hitting the ground again is 140m, and that the angle of projection is 25° above the horizontal,
find U.

3 Inagame a ballis kicked from the point O on horizontal ground, so that it lands on a scoring area which
extends from 20m to 25m from O. If the angle of elevation when kicked is 35°, find the initial speed required
for the ball to land in the scoring area.

0 4 A particle is projected from point 4 on horizontal ground with initial speed 25ms~! and angle of elevation 6.
Given that the range of the particle is 60m, find the value of the angle 6.

@ 5 A football player kicks a football from a point on the ground with an angle of elevation of 15°. The ball must
land on horizontal ground level between 10m and 20m from the player’s feet. Find the possible range of
values of the initial speed of the football.

@ 6 A basketball is thrown with speed 10ms~! from a point 2m above the ground, at an angle of 45° above the
horizontal. Find the speed of the basketball when it is at a height of 4m for the second time during its motion.

@ 7 A particle of mass 2kg is fired up a smooth slope of length 4m, with initial speed 10ms™!, which is inclined at
30° above the horizontal.
The bottom of the slope is at the same level as horizontal ground.

a Find the speed of the particle at the top of the slope.

b The particle now flies off the slope and travels as a projectile. Find the greatest height achieved above the
ground level.
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m 8 A particle is projected horizontally from a point that is 12m above a horizontal surface, with a speed of
15ms~!. Find the horizontal distance travelled before the particle hits the surface below.

@ 9 A particle is projected across a horizontal area of land, with initial speed 30ms~! and inclined at an angle of
40°. Find the duration of time for which the particle is at least 10m above the ground.

@ 10 A small stone is thrown from the top of a building that is 30m tall. The stone is given an initial speed of
Sms~!, and it is directed downwards with an angle of depression of 15°.
a Find the time taken for the stone to reach the ground.

b Find the speed of the stone as it hits the ground.

13.2 The Cartesian equation of the trajectory

In Section 13.1 we saw that the general motion of a projectile launched from ground level is
governed by its initial speed and the angle at which it is projected.

Consider the horizontal part of the motion. We know that x = urcos @. This means that, at
X
ucos 6

any time, the value of 7 is given by 7=

Now consider the vertical part of the motion. We know that y = uzsing — —12—g.t2. Substituting

2
the expression found for 7 into this result gives y = usinf = - lg 2 ;
ucosd 27 \ucosf

2
X

Simplifying this, we get y = xtand — g—zsec2 6.
2u

This is essentially a quadratic equation in the form of an inverted parabola. The value of ,

once chosen, is constant and so only x and y vary. The equation is known as the Cartesian
equation of the trajectory of a projectile.

Consider a ball that is to be kicked over a wall. The wall is 5m tall and is 20m from the
starting position of the ball.

—
—-

Y

If the ball is kicked at an angle of 30° above the horizontal, how can we find the minimum
speed required so that the ball just passes over the wall?

2
Begin with y = xtané — gxz sec? @. At the top of the wall, x =20,y = 5.
2u

x 207
So 5=20tan30 — £ sec? 30, This can be written as 5 = M - 80020, from which we

2u? 3 3u
find «=20.2ms .

2,

X
When a particle is at ground level during its motion, y = 0. This means xtan& — gézsec2 6=0
2u

_ 2uttand _ 2uPsin@cosd _ u’sin26
gsec’d g g

the start and finish points of the motion, as shown in Key point 13.2.

2

or x(tant? - Jg—zxsec2 6) = 0. This gives x = 0 and x

2u
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When y =0, ¥ tan 0 = T ges? 0=l 08 x(tang———g—’xseczé') =0.

24 22

o
2~ 51n 24

So the start and finish points of the motion are x =0 and x =

WORKED EXAMPLE 13.4

A projectile is launched from a point O, 1 m above horizontal ground level. It is given an initial speed of 20m s~
and an angle of elevation of 25°. Find the horizontal distance from O when the particle is 2 m above the ground

and descending.

o
o

Answer
gx?
Start with y=1. Use y = xtan 8 — —zsec2 a. The projectile starts at 1 m above the ground, so
2u v =1 for the particle to be 2m above the ground.
Then 1 =xtan25 — . 2;)2 sec?25 or Input the known values into the trajectory equation.
X
29

%xl —xtan 254 1 =0 leads to two results.

These are 2.32 and 28.3. Obtain two results for x. One value is when the
projectile is ascending and the other value is when it
1s descending.

Hence, x = 28.3m. Choose the larger value of x for when the projectile is

descending.

Consider a particle being projected downwards instead. Remember that gravity assists when
particles are descending, so it is a good idea to make the downward acceleration positive.

A =0,
\‘-
‘-‘.\ 5
s <
\\
~,
~
\\
hY
10m A
N,
N,
N\
N
AY
hY
\

\\

Y 6m \
el \’-_

«

For example, consider a particle projected from a point 10m above horizontal ground,
with initial speed 5Sms™! and an angle of depression @. Can we determine the angle if the
horizontal distance travelled before hitting the ground is 6m?

’ 10 x 6

X
Start with the equation y = xtan @ + g—8602 6, giving 10 = 6tand +
22 o5

(1 + tan? @),

which leads to 7.2tan’@ + 6tané — 2.8 = 0. From here, tan 6 = % or tan@ = —g. However,

tan @ = —g would give a negative value for . The magnitude of this angle would represent
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the angle of elevation that would cause the particle to travel 6m horizontally before hitting

the ground. Hence we require tan@ = % = 0= 18.4°.

WORKED EXAMPLE 13.5

A ball is thrown from the top of a building of height 20m. The ball is thrown such that the initial speed 1s Um 7!
and the angle of depression of the throw is 30°. Find:

a the horizontal distance travelled in terms of U

b the horizontal distance when U= 5.

Answer
a Use y=xtan@ +=—sec’ 4. Use the Cartesian equation of the trajectory.
2u”
/3 20x7 : :
So 20 = \—3\6 + “0’\2 : Substitute the values for the angle and height.
AU

So 20x* + V3U% — 60U% =0. Rearrange to get a quadratic in x.
Then x = % V3(=U? + VU1600 + U?))m. Solve for x. (Ignore the negative solution.)

b When U=35,x="7.65m. Find the solution when U = 5.

316 Consider a particle that follows a parabolic path, such as y = 0.5x — 0.01x?, When

%
we compare this equation with the trajectory, y = xtan® — g_z sec? 0, it is clear that
2u
tand = 0.5 and also that 1—02 sec? @ = 0.01.
)
To solve these we must first find @ = 26.57° then, using sec?@ = 1 + tan*@, we obtain

sec@:? and u=25ms™".

WORKED EXAMPLE 13.6

A projectile follows the path y =0.3x — 0.1x2. Find the initial speed and the angle of elevation of the particle.
Answer

tand = 0.3, so 8 = 16.70°. Compare the coefficients for the linear term.

izs.ec2 0=0.1 Compare the coefficients for the quadratic term and
2u . 10x 1.09 use sec?d =1 + tan“0 to find the value of sec 6.
Since sec? @ = 1 + 0.3% it follows that * = 7 — x 10.

So w=7.38ms". Find the speed.

We will now look at the direction of motion of a projectile at certain points in its path.
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As the object follows its path the horizontal component of velocity is unchanged. However,
the vertical component goes from its greatest positive value initially to zero at the highest
point of the trajectory to its greatest negative value when it reaches the ground again.

This implies that the direction of motion of the particle is related to its velocity at that
time. To find the direction we just need to know the components of velocity. We already
know the horizontal component since it is constant throughout the motion. So we only
need to find the vertical component.

Consider a particle with initial speed 20ms~!, projected at an angle of elevation of 50°
from horizontal ground. Is it possible to find the height of the particle when it is travelling

in a direction of 45° below the horizontal?

When the angle is 45° below the horizontal, from the diagram we see that v, = —v,, and so

20¢0s50 = —(205sin 50 — g¢). This means we can work out the time at this point and use this 3 "
time to find the height. So ¢ = %(003 50 + sin 50) = 2.818s. Then, using y = 20¢sin 50 — 5¢2

gives a height of 3.47m.

WORKED EXAMPLE 13.7

A particle is projected from the top of a tower that is 50 m tall. The initial speed is 25ms~ and the angle of depression
is 10°. Find the height of the particle above the ground when the downward angle of the direction of the particle is 30°.

Answer

o . L'
= b The tangent of the angle is “-‘Z.
N

Blate that bash =2 Thai v have v, = V3 . Recognise the relationship between the tangent and
Vx 3 the components.

So 25sin10 + gr = l/3%(25 cos 10). Use this relationship with v, =25sin10 + g¢ and
v, = 25¢0s 10. Note that this time v, is positive since
the motion is downwards throughout.

From this ¢ = 0.9873s. Solve to find the time.

Then y = 25¢sin10 + 572 gives y = 9.1603. Work out the vertical distance travelled from the
point of release.

Hence, 50 — y = 40.8m above the ground. Determine the height.

DID YOU KNOW?

Galileo rolled inked bronze balls down an inclined plane to determine where a projectile would
land. This experiment allowed Galileo to determine that the path of a projectile is very close to
being parabolic.
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1 A particle is projected from horizontal ground with initial speed 15ms~! and

angle of elevation 60°. Find the horizontal distance travelled when the particle is
first at a height of 8m above ground level.

2 A ball is thrown from a point 2m above horizontal ground. The initial speed is
20ms ! and the angle of elevation is 45°. Find the horizontal distance covered
when the ball is 12m above the ground.

3 A particle is projected from ground level with initial speed 30ms~! at an angle
of elevation of 25°. Find the horizontal distance travelled from the starting point
when the height is 4m for the first time.

@ 4 A particle is projected from a point 5m above a horizontal plane. The angle of
elevation is 10°. Given that the particle travels 75m before hitting the ground,
find the initial speed.

@ 5 A particle is projected from a platform 4m above horizontal ground, with an
initial speed of 20ms~! and an angle of elevation of 20°. Find the direction of the
particle as it lands on the ground.

@:59 @ 6 A ballis kicked at a house window. The window is 4 m up a vertical wall from a
horizontal floor. The ball is kicked from a position that is 12 m distance from the foot of
the wall. If the ball enters the window at an angle that is 30° below the horizontal, find: Consider

318
cost @ + sin? 6.

a the time taken to reach the window

b the initial speed of the ball.

3

A particle is projected from the top of an office building that is 35m tall. The initial
speed is 14ms~! and the angle of depression is 20°. Find the height of the particle
above the ground when the downward angle of the direction of the particle is 45°.

o 8 A particle is projected from a point on a horizontal surface with initial speed u and
angle of elevation . At any time during its motion, the particle is at the position (x, ),
where x is the horizontal distance travelled and y is the vertical distance travelled.

gx’ 5
Show that y = xtanf — o (1 + tan® g).
u

@ 9 A particle is projected from a point on a horizontal plane with speed 20ms~!
at an angle of elevation of 8. Given that the particle passes through the point
x =20, y = 10, find the possible angles of elevation.

o 10 A particle is projected from a point on horizontal ground with initial speed u and
angle of elevation a. Show that x? + * = 122 — 10p¢? — 25¢*, where (x, y) is the
particle’s position at time 7.
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WORKED EXAM-STYLE QUESTION

A small stone is projected from a point O on horizontal ground, with speed ¥'ms~! at an angle 6° above the
horizontal. The horizontal and upward vertical displacements of the particle from O at time ¢ seconds after
projection are x and y respectively. The equation of the stone’s trajectory is y = 0.75x — 0.02x2, where x and y are
in metres. Find:

a thevalues of @ and V
b the distance from O of the point where the stone hits the ground
¢ the greatest height reached by the stone.

Answer
. gx? : it 3
a Comparing y = xtan — 2—2 sec? @ with p = 0.75x — 0.02x2, it is clear that tan@ = 7 Hence, = 36.9°,

25v10

Then ij sec? @ = 0.02, and since cosf = § sec? @ = % Hence, V' = =19.8ms™ L,

b Letting y=0,0.75x — 0.02x>=0.So x=0 or 0.02x = 0.75. Hence, x = 37.5m.

¢ At the highest point x = E0) =18.75,50 y=0.75% 18.75 - 0.02 x 18.75* = 7.03 m.

2

Checklist of learning and understanding

Governing equations:

® For displacement: x = urcos@ and y = ursin@ — %gaf2

® For velocity: v, = wcosf and v, =using — gz The formulae for range
Psin20 and total flight time

e apply only to particles
) that start and finish
Zusin @ their motion on the
same horizontal level.

® Tor the range: xy,, =

® Total flight time: ¢t =

Cartesian equation of the trajectory:

e
® y=xtanf— EY cec?a
2’

® Ifgivenas y=ax —bx? then a=tand and b= iuzsec2 0.
P

L

Direction of motion:

® Particles projected upwards are subject to —g, so y = ufsind — ; g and v, =using — gt.

® Particles projected downwards have +g, and so 3 = ursiné + 1gz‘2 and v, =wusing + gr.
2

v

v
® For the angle of projection use tan@ = =

X
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®

1

A particle is projected from a point O on horizontal ground. The velocity of projection has magnitude 20ms™!

and direction upwards at an angle 8 to the horizontal. The particle passes through the point, which is 7m above
the ground and 16 m horizontally from O, and hits the ground at the point 4.

i Using the equation of the particle’s trajectory and the identity sec’ @ = 1 + tan® 0, show that the possible

values of tan @ are 3 and ﬂ
4 4

ii Find the distance 04 for each of the two possible values of tané.
iii Sketch in the same diagram the two possible trajectories.
Cambridge International AS & A Level Mathematics 9709 Paper 51 Q5 June 2010

A particle P is projected from a point O with initial speed 10m s™'atan 10ms™ A
angle of 45° above the horizontal. P subsequently passes through the
point 4, which is at an angle of elevation of 30° from O (see diagram).
At time ¢s after projection the horizontal and vertically upward
displacements of P from O are xm and ym, respectively.

i Write down expressions for x and y in terms of ¢, and hence
obtain the equation of the trajectory of P.

ii Calculate the value of x when P is at 4.
i Find the angle the trajectory makes with the horizontal when P is at A.
Cambridge International AS & A Level Mathematics 9709 Paper 51 Q7 November 2010

A particle P is projected with speed 35m s~! from a point O on a horizontal plane. In the subsequent motion,
the horizontal and vertically upwards displacements of P from O are x m and y m, respectively. The equation of

1+ k5
the trajectory is y = kx — %, where k is a constant. P passes through the points 4(14,a) and B(42,2a),

where a is a constant.

i Calculate the two possible values of k and, hence, show that the larger of the two possible angles of
projection is 63.435°, correct to 3 decimal places.

For the larger angle of projection, calculate
ii The time after projection when P passes through A4,
i The speed and direction of motion of P when it passes through B.

Cambridge International AS & A Level Mathematics 9709 Paper 51 Q7 November 2016
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PREREQUISITE KNOWLEDGE

W here it comes from ‘ What you should be able to do Check your skills
AS & A Level l Resolve forces in two 1 An object of mass m is sliding down a smooth
Mathematics Mechanics, 1 perpendicular directions. ' slope inclined at an angle € to the horizontal.
Chapter 2 | Find the components of the weight of the

‘I object pdrallel and perpenchcular to the slope.
AS & A Level i Be able to determine or 2 A particle of mass 2 kg is resting on a rough
Mathematics Mechanics, | make use of the coefficient of slope inclined at an angle @ to the horizontal.
Chapter 4 friction of an object on the i The maximum force that the frictional force

; point of moving. can produce is 10N. Find the value of & for
| . which the particle is on the point of slipping.

What is equilibrium?

When all forces acting on an object are balanced and the vector sum of the forces is zero,
we say the object is in a state of equilibrium. Equilibrium is one of the most important
concepts in engineering analysis. It allows you to check whether systems are stable and to
calculate otherwise unknown forces.

In this chapter, we shall find the moment, or turning effect of a force, produced when we
apply a force at a perpendicular distance to an object. For moments to be applied, the

n object must have length, so we cannot model it as a particle. Instead, we use a rigid body, a
larger version of a particle. This is assumed to be inflexible so it does not bend when forces
are applied.

We shall use this to find the centre of mass of standard shapes and composite bodies.
Finally, these bodies will be placed in positions such that they are on the point of breaking
equilibrium by sliding or toppling. To tackle the problems, we will resolve forces and take
moments. The symbols we use are shown in Key point 14.1.

In this chapter, you will use the symbols a for acceleration, v for velocity, and x for displacement.

%

Unless stated otherwise, g = 10ms™.

14.1 The moment of a force

Imagine trying to loosen a nut with a spanner (wrench). Applying the force with a short
spanner would make it difficult to loosen the nut. But applying the same force with a longer
spanner will result in a greater turning effect. This turning effect is known as a moment.

Moments are calculated by multiplying a force by a perpendicular distance, as shown in Key
point 14.2. This means that moments are to be measured in newton metres (Nm). When we A
talk about moments, we refer to the moment of that particular force. 0

The moment of a force, F., about a point Ois F'x d. where d is the perpendicular distance from
the point O to the line of action of the force F. If the distance between the force and the pomnt O is
zero, there s no turning effect.




Chapter 14: Equilibrium of a rigid body

4N

" 2N

})\
P
rd
rd
o (=)
=) 7
(e
<
<
rd
s
n
=]
s,
rd
rd
A Y
A"

From the diagram, the moment of the 6 N force about the point 4 can be calculated as
6x2=12Nm.

For the moment of the force about B, we first need to find the component of the force that
is perpendicular to the line through B. So the moment is 3cos20 % 5 = 14.1 Nm.

The other component of the force, 3sin 20, passes through B, so its moment is zero,

For the moment of the forces about the point C, we add the turning effects since they both
act in the same direction, which is clockwise. So the momentis 4 x 2.5+ 2 x 6 = 22 Nm.

WORKED EXAMPLE 14.1

For each of the following cases, work out the moment and state whether it is a clockwise or anticlockwise
turning effect.
I |
—T> { i 7.5N
TN | sIN | ' =)
i : 25¢ .'
: 1 1
1 3m " s 6.2m B :
! 1 R TEreswag v 1
1 ! % 1
. | v d4m i
1 i . I
————— ‘4 j i
-7 2m i |
: 15
55N ! !
i 46N |
I I
I I
Answer
Ford ©:7x3-55x%x2=10Nm clockwise Choose clockwise or anticlockwise as your
positive direction.
For B ©):57¢c0825 x 6.2+ 4.6cos15 x 4 = 49.8 Nm clockwise Determine the components of forces.
For C 0:3.8 x 5.4 — 7.5c0820 x 4.3 = =9.79, therefore It is better to state a positive moment
9.79 Nm anticlockwise. ‘anticlockwise’, rather than a negative moment
clockwise.
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If we take a rod and apply a series of forces to it, we can observe the turning effect on the 5N

rod. We generally model it as a ‘light’ rod, so we can ignore the mass, and a rigid body, so it lmTl . Som
does not bend when forces are applied. l 5 l
So taking moments about the point 4, 0:3X2+5x1-8x2= 5 Nm anticlockwise. 8N 3N

The SN force and the 3 N force turn the same way about the point 4, whereas the 8 N is in
the opposite direction. This means that the rod will turn about 4 as it is not in equilibrium.

WORKED EXAMPLE 14.2

In each case, a light rod is pivoted at a fixed point, 4. Find the unknown values such that the rod will have a zero
moment about A.

a 6N b ¥N C A48N 25N
Im 15m 12m

2m _2.2m| xm

A A [ 2.1m 0.5m 1.7m .
A
3N 7.5N ¢
4N 4N

16N

Answer

a About 4 D:dx(x+22)-6%x22-4x2=0 Note the distance of x + 2.2 between the
So 4x + 8.8 =21.2, giving x =3.1m. SO AR
b About 4 0:3x14+75%x25-—yx37=0 Make sure the total moment is zero in order
g to determine y.
So 3.7y =21.75, giving y = 5.88N. g
¢ About 4 0:48x43+25%x1.7-16cos0x22=0 Remember to use only the component of the

N f ioular to the rod.
So 35.2c0s 6 = 24.89, giving & = 45.0°. brce perpendiculax v thegod

Consider a uniform rod of length 2m and mass 2kg resting in equilibrium over the edge of
a table. The edge of the table is the point 4. The mass B at the end of the rod is 3kg.

ASgN
(1-x)m xm lm
B g > —>
l A
3gN 2gN

This time we consider the weight of the rod. Because the rod is modelled as uniform, its
weight acts at the centre of the rod.

If we ignore the small mass at the point B, taking moments about 4 gives 2g X x =20xNm.
This means the rod would not be in equilibrium and would turn about the point 4.

So we include the mass 3 g and take moments again, now 2gx = 3g(l — x), andso x= %m.

The reaction force has a moment of zero about the point 4.
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WORKED EXAMPLE 14.3

A uniform rod, 48, of length 5m and mass 10kg, is placed over the edge of a cliff such that Bis 4m from the edge of the
cliff and hanging over the edge. A man, of mass 80kg, stands on the cliff side of the rod, a distance of xm from the edge

of the cliff.

a Find the value of x so that the rod is on the point of tipping over the cliff.
The man now stands at 4 and a boy of mass 35kg walks across the rod towards B.

b Can the boy walk all the way to the end of the rod?

Answer
a AR Sketch the first case, labelling your diagram
Slm . 1S 2.5m = fully.
-« [ el o —— -
A lx B
80g N 10gN
Aboutedge O: 10gx 1.5=80g x x,s0 x = %m. Taking moments about the edge gives x.
b AR Redraw diagram with the boy included and
Llm | 15m _xm. _ @5-x)m _ the man now at point A4.
(o2 T St O] -
Al l l B
80gN 10gN  V35gN
About edge O: 10g x 1.5+ 35g x (1.5 + x) = 80g x 1 Taking moments about the edge shows that
the distance 1s less than 2.5m, so the boy can
80g — 15¢ 3 ?
Then 1.5+ x=—"-—" 80, at most, x =—m. never reach B.
35¢ 14

So the boy cannot reach the end of the rod at B.

1 Arod 4B of length 3.1m and mass 8kg is balancing on a pivot at a point C, where 4C is 1.2m. It is kept
balanced by masses being placed at A and B. If the mass at A is 4kg, determine the mass at B.

2 Arod 4B of length 1.4m and mass 6kg is balancing on a pivot at a point C, where AC is 0.5m. Tt is kept
balanced by masses being placed at A and B. If the mass at 4 is 3kg, determine the mass at B.

0 3 Arod 4B, of length 1.1 m and mass 4 kg, is resting on a horizontal table with part of the rod hanging over the edge of
the table. The rod is perpendicular to the edge of the table. Point A is in contact with the table and is 0.3 m from the
edge. A mass k kg is placed on the rod at the point A to stop the rod from toppling. Find the minimum value of k.

4 Find the moment about O of the forces shown, stating if it is clockwise or anticlockwise.

§N
a -—?31\] b C

1
1 N
1 ¥ o
12m 250 \‘{{'0 ,32“—’ 2 ‘.f/,
\\”_a ¥ —‘_— O
= -

wh
Z
L4
[ee]
o
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5 For each of the following rods, find the moment about the point £.
8.6N

8N 2N 2 :
a T T b SN k@ C 57N 400!
2m C 1 m 3m 2m N\ 17N 3m 1.8m \!
2.5m l 3m P P » j§
35N l4.2N 2.5NAJ§][

@ 6 A rod, AB, of length 0.4m and mass 5kg, is resting such that part of the rod is hanging over the edge of a
horizontal table. The rod is positioned so that it is perpendicular to the edge of the table, and with the point A
in contact with the table and 0.15m from the edge.

a A mass of 8kg is placed on the rod to stop the rod from falling off the table. Find its distance from the point A.

b The 8kg mass is now placed at the point 4. A second mass is added at the point B. Find the maximum
mass that can be added without the rod toppling.

@ 7 A rod, AB, of length 5m and mass 12kg is hanging over the edge of a cliff. The end A4 1s 1.2m from the edge of
the cliff, and the rod is assumed to be perpendicular to the cliff. A woman, of mass M, stands at the point A4,
and a girl, of mass m, stands at the point B. Given that the rod is on the point of tipping, find m in terms of M.
@ g;j_" 8 Ineach case, find the unknown such that the total moment about O is zero.
xN

a 43 AN N b % 600} AlON ¢ :ﬁ/”‘
! ]
' . 2m T \<; T 3m 2o T | 2m xm .
2m /4 Im lm >\ 0 xm 2xm l l 0
48, 457 3x N 8N Y6N

5N

E 14.2 Centres of mass of rods and laminas

We can use moments in finding the centre of mass of an object. All the weight of an object
acts through its centre of mass.

For example, consider a rod of length 2m and mass Skg. We add a mass of 3kgto i T

one end. 0 l L
If we take moments about O 0:5gx 1 +3gx2=11gNm. 5¢N 3gN

Now consider this turning effect as coming from one force positioned where

=

A

8gxx=11g, then x= -lg—lm from the point O.
We have created a single force a distance of %m from O. This force multiplied by

the distance x represents the sum of all the turning effects of the system.

WORKED EXAMPLE 14.4

Find the distance, &, of the single force that represents all other forces from the point O.

a 2m 0.7m 1.3m b 1m 4.5m 1.5m c
o l l f 0_1 l 1* 10 3a l 1.5a l
; 4
4gN 3gN 7TgN 3mg bimg 3Img mg

mg " 2mg

Answer
a About O D:4gx2+3gx2.7+7gx4 Take moments about O, then compare this to the sum of
=44 1g= ldgxx the forces x x.

Hence, x=3.15m.
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b About O O:3mgx | +mgx55+2mgx7
=225mg=6mg XX
Henee; x=3.75m.

¢ About O O:3mg x 3a + 4mg x 4.5a Although the moment of the 6mg force at Q is zero, you
=27mga = 13mg x x must remember to include the weight when finding ¥.

Hengce, x= 2a.
13

myx; + Hip Xy + MgXy + o

The distance of the centre of mass ¥ from the point of reference is equal to

3

my+nip+n; + -
where 71, is the mass of each element of the object, and x, is the distance of each element from a

pomt of reference about which moments are taken.

. . . VA
Let us look at a 2-dimensional case such as a framework with masses added. ! B
We can now work out the centre of mass in two dimensions. This will give us ke kg
coordinates relative to two perpendicular axes of reference. In this framework, we
shall assume each rod is light but there are masses attached at each corner. 2m
To take moments about a point, we assume the framework is horizontal and the
weights have a turning effect on the framework. e O2kE iy >

Taking moments about Ox 0:5gx2+4dgx2=15g x¥,s0 y = 1.2m. Remember
that the masses that lie along Ox will not contribute to the turning effect.

Then moments about Oy D:4gx 4 +4g x4 =15g X X, so }:%m

So the centre of mass G has position (%, 1.2) relative to the point O.

WORKED EXAMPLE 14.5

A rectangular framework, ABCD, is made of four light rods. There are masses on the rods at the given points.

( T
D Sm cl
------------ -G, )

- 3m
1
1
i
o ! 2%

In each case, determine the coordinates of the centre of mass. Use AB and 4D as your axes, with 4 as your origin.
a 2kgatA,4kgat B, 7kgat C,2.5kgat D
b 5kg at the midpoint of AD, 6kg at B, 4kg at E, where CE= %C’B

¢ o6kgat 4, 3kg at the midpoint of 4B, 8kg at B, 10kg at point F, where DF= %DC
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Answer
a About ABD:7gx3+25gx3=155xy Ignore the masses at 4 and B for this part.
57
S0 =—
o
About AD D:4gx5+T7gx5=155x% Ignore the masses at 4 and D.
Sl o= M
31
: 110 57 ;
Hence, centre of massis G LT State the centre of mass.
b About ABD:5gx1.5+4gx2=15gxy Note that the mass at A4 is zero.
So y= 3—17.
= 4l

About AD D:6gx5+4gx5=15gxX

S8 o= —1“9
2
Hence, centre of mass is G(lﬂoa 2(1))
c About AB:10gx3=27gxy
So y= &
9
About AD O
3gx25+8gx5+10gx3=27gxx Remember that DF =3m.
S0 = E
54
Hence, centre of massis G E, 10 ;
547 9

We shall now consider a thin, 2-dimensional shape known as a lamina. If a lamina is described
as uniform, then we assume that its mass is spread evenly across its area.

The standard shapes you will encounter are the rectangle, circle, triangle and sector of a circle.
For a rectangle the centre of mass is in the centre, where the lines of symmetry meet.

For triangles, consider the scalene triangle ABC, with L, M, N at the midpoints
of BC, AC and AB, respectively.

s

Now, relative to an origin O, we have 04A> =a, OB =b and OT =¢. We want to
find OG.

First, state that OG =0A + aﬁj or OG = 6§+ﬂm, or OG =0C + yﬁ\f.
The scalars a, 3, v are all between 0 and 1.

Next, with E:(bga)+%(c—b),mz(c—b)+%(a—c),@ﬁ:(a—c)+%(bﬁa),we

have OG = (1 —a)a+%(b+c),ﬁ>:(lfﬁ)b+§(a+c) and OG =(1 —y)c+g(a+b).
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This means that each result must have the same coefficients for a, b, ¢. For example, we see
that 1 —a=2 -7 aid 1 - =2 =L 86 1 —u=® which lsads o Y
2 2 2 2 2 3

Hence, OG = %{a +b+c)

Next, consider the triangle 4BC with AB=6a and 4C = 3a. The centre of mass G C
can be found using 4 as the origin and then moving one-third of the distance along
each edge to get G(2a, a).

Note that this is relative to the edges 4B and AC. An alternative way of doing this
; + )+

is to use the result G(YI F x32 & x3, 21 J; A

the x; and y; terms are the vertices measured from an origin. In our case we used A

0+6a+00+0+3a

3 ’ 3

), as shown in Key point 14.4, where

) leads to the same result as before.

as the origin, so G(

KEY POINT 14.4

X1 + X3 113 Sl e
3 : 3

The centre of mass of any triangular lamina is given by ( ) where the

three vertices of the triangle are at (x, v;), (X2, ¥3). (3, V3).

WORKED EXAMPLE 14.6

For each case, work out the centre of mass of the triangle, stating your point of reference.

1 C 2 3,5
J% (
1
1
94 i
2 ! 3
' »2)
10a
A B "t (L) =mmmmmmmm oo ee »
Answer

Set the axes. Then take one-third

a Using ABand AC as axes,lx 10z and l><2as gives G(loa,ia).
3 3 2 32 of each length from 4.

b Using O as the origin, (1 +§ . 8, L ; % 2) gives 6(4, i) Take the mean of x and y.

Consider a lamina in the shape of a sector of a circle with an angle 2« at the centre, a
radius r and a centre O. Then a smaller sector is chosen. Its angle is d@, which is so small
that the sector is almost a triangle, meaning we can use our results from above to find the
position of the centre of mass of this small sector.

For that small sector, OG = %r, which means that the length 04 = %rcos (9 + %dﬂ) ~ %r cosd.

The total mass of the large sector, represented by the area of the sector x the mass per unit area,

18 %rz X 2a X p = rlap, where p, the Greek letter rho, is the mass per unit area. The mass of each

(73
small sector is %ﬂpd@, so summing each moment contribution, r*apx = J grcosﬂ X %rzpdé.
—a
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r(sina — sin(—a)) _ 2rsina

So Papx = % pri[sing]%,, leading to x = , as shown in

3a 3a
Key point 14.5. This result can be used for any sector, giving the distance OG, where OG bisects
the angle 2a subtended at the centre of the circle. The angle must be given in radians, not degrees.

The centre of mass of a sector-shaped lamina with an angle of 2 subtended at the centre is

X 2rsina
given as ———.
3a

WORKED EXAMPLE 14.7

Determine the centre of mass from the centre O of a sector of radius r with angle:

a L b =
2
Answer
a 0G = i (x, Quote the result.
3
here a = Z Take half the angle subtended at the centre.
rsinZ
330 L :
" Hence, OG = 5 Determine the distance OG.
T
4
. 42
which is .
3n
Again, using
b 2rsina . . o :
0G = 5 with Since a semi-circle 1s a sector the result for the sector can
3a ;
5 be used with a = ~.
= 5 gives the result 2
2rsin= Don’t forget that the angle must be in radians for this
0G = 2 to work.
3n
2

TR,
which is —.
in
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Now that we have seen some standard lamina, we can look at combining YA
these shapes to form composite bodies. In this example we have a !
composite lamina made of two uniform rectangular laminae. Using p as .:
1
1
1

the mass per unit area, one rectangle has mass 3a’p and the other has mass
2a%p, so the whole body has mass 54%.

Taking moments about the y-axis ©): 3a% x %a + 2a%p (3a + %) =507, .
and so x=2.3a. o g

Then taking moments about the x-axis ©): 3a% x g— +2a%p X a = 5a%7y,

andso 3 =0.7a.

So the centre of mass is G(2.3a, 0.7a).

WORKED EXAMPLE 14.8

For each composite shape, determine the centre of mass relative to the axes shown.

a A b YA

H :

1

d
3a 2a
a
Su 1.5a a 2
5 x T %

c y

e i T

| e %
Answer
a Large rectangle has mass 15a%p, small rectangle Work out the mass of each part first. Use p as the

has mass 3a%p mass per unit area. You can then find the total mass.
So total mass is 184%p.
About the y-axis O: Take moments about each axis to determine the

5 8 ; 3 S coordinates of the centre of mass. The height of the
15a°p x Sa+3a’p( Sa+ 7% ) =18ap% smaller rectangle must be 2a.

e TH
So x=-=a.

24

About the x-axis ©):
15a%p x %cz +3d%p x a = 18a%py

= 17
S =—a.
oy 12a
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b Rectangle mass is 2a’p, triangle mass is a’p For the triangular lamina the centre of mass is 1
So total mass is 3a%p. of the distance from the bottom left corner of the
triangle.

About y-axis O:
S| ? 2 P
2ap % 3 +apX|a+ ga =3a’px
. _ 8
This gives x=—a.
2)
. o 5y —
About x-axis O): 2a°p X a + a’p X B acpy

This gives y = %a.

¢ Triangle mass is 6a’p, semicircle mass is 2na’p The height of the triangle 1s twice the radius of the
So total massis (6 + 2m)a’p. semicircle.
Centre of mass of semicircle from the vertical 9
_ . 4x2a 8a For the semicircle we know that OG =—. We can
diameter shown1s ———=—. . ; In
3n In quote this result and use it.

About y-axis O:

6(12,0 X 2a + Znajp X (3a o §E> =(6+ 211)“3!3E
3n

S0 ¥=2954.

332

About x-axis O:

6a’p X %a + 2na’p X 2a = (6 + 2n)a’py

This leads to y = 1.67a.

What if the lamina is a shape such as the lamina shown here? There are two ways we can
deal with this.

2a

2a

4a

4da
CF T

We could split the shape into a rectangle and a square, adding the moment of each shape to

determine the total moment. |:] _|_ D

Alternatively, we could consider the larger square and its moment then subtract the
moment of a smaller square to get the moment of the remaining shape.

[
r Lr

|
L]
I

For this example, we are going to use the second method. In this example it is rather trivial,
but for harder examples it is better to use this method. Note that the large square has mass
16a%p and the small square has mass 4a’p, so our lamina has mass 12a°p.
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Taking moments about Oy ©: 16a°p X 2a — 4a’p x 3a = 12a°p%, giving X = %a.
Taking moments about Ox O: 16a%p x 2a — 4a’p X 3a = 12d%y, giving y = %a. A
K . i
Note that the results for X and y are the same due to symmetry. "
If we look at a more complicated example, such as in the diagram on the right, then we p 15
see that a large rectangle, of dimensions 4.5 x 6.5, hasa 3.5x 1.5 rectangle removed, a E b3
2x 2 square removed, and a 1 x 1 square removed.
1
The mass of the complete rectangle is 29.25p. The removed parts are 5.25p, 4p and p,
respectively, so the lamina has mass 19p. We can now take moments about both axes to )
find the centre of mass.
2
About Oy 0:29.25px2.25-525p % 1.75-4p x 3.5 p x 0.5 = 19p%, so x =2.22. V1
]
About Ox 0:29.25p x 325 - px0.5-4p x2 - 5250 x 4.75 = 1997, so y = 3.24. b 3.5 %
WORKED EXAMPLE 14.9
The diagram shows a large circular-shaped lamina that is constructed YA

by removing smaller circular areas from a circle of radius 15cm.

The circle centred at the point A(—6, 7) has radius 4 cm, the circle
centred at B(10, 3) has radius 2cm, and the circle centred at C(=3, —6)
has radius 5cm. Relative to the point O, find the centre of mass of the
lamina. You may assume the lamina is uniform.

Answer
Large circle mass: 225np Determine the mass of each smaller circle to obtain

. the lamina’s mass.
Circle 4 mass: 16mp

Circle B mass: 4np
Circle C mass: 25mp

So lamina mass is 180mnp.

Taking moments: Take moments; notice that some contributions are
added.
About Oy D:
This is actually —(mass x (—length)), so still
225mp X 0 +25mp X 3 + 167p X 6 — 4np x 10 = 180mpx subtracted but with negative displacement.

So x=0.728cm.




Cambridge International AS & A Level Further Mathematics: Further Mechanics

About Ox O: Repeat for y.
225mp X 0 4+ 25mp X 6 — 16mp x 7 — 4np X 3 = 180mpy

So y=0.144cm.

DID YOU KNOW?

Centres of mass are very important for understanding planetary motion. The centre of mass
between two objects is known as the barycentre. This is the point at which the two objects balance
each other. For example, the barycentre between the Earth and the Moon is offset from the centre
of the Earth by approximately 4700 km.

Now we will look at shapes formed from wire. For example, a piece of uniform wire could
be bent into an arc of a circle with radius r, and angle 2« radians subtended at the centre.

So each small arc of wire has mass rpd@, and its distance from Oy is

#COS (9 + %9) ~ rcosd.

The total mass of the wire is 2rpa, so the moment of the wire about Oy is

2rpax = I

¥’ pcos6ds.

rFsina

So 2ax = r[sind]*,, which leads to x = ="

—a

334 . T
FSin —
2_>

T

For a semicircle, the distance of the centre of mass from O is

24/2r 2
=

For a quarter circle x =

WORKED EXAMPLE 14.10

The letter P is constructed using a uniform straight piece of wire of length 4a joined to another piece
of uniform wire that is bent into a semicircle of radius a. Given that the semicircular piece of wire is
three times as dense as the straight wire, find the position of the centre of mass G(x, y) relative to the
point O.

Answer
Mass of straight wire: 4ap
Mass of semicircle: ma x 3p = 3nap 24

For X ©: 4ap X 0 + 3nap X % = (4ap + 3map)x

6 o
Hence, x=- & .
4+ 3n
- For y O: 4ap x 2a + 3nap % 3a = (4ap + 3nap)y
_ (8+9m)a
Hence, y=——

4431
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1 The diagram shows a lamina that is formed by removing a small rectangle from a larger rectangle. Find the
distance of the centre of mass from 4B and from AC.
B

du

o
1
1
2a !
]
1

Sa

3a

A o

2 The diagram shows a uniform lamina in the shape of a trapezium. Find the distance of the centre of mass
from edge AB and from edge AC.
B

4.5

A 12 (6]
3 The diagram shows two uniform laminas, each a right-angled triangle, that are joined together at one edge, 4B.

The smaller triangle is twice as dense as the larger triangle. Find the distance of the centre of mass from the edge AB.
B

3.9

4.5r A 10.8r

4 The image shows a uniform lamina that is formed by removing a square from a right-angled triangle. Find the
coordinates of the centre of mass, as measured from the point O.

”¢ 0 2q

5 The diagram shows a uniform square lamina of side 4r and density 2p attached to a uniform lamina in the shape
of a quarter circle of radius 4r and density p. Find the distance of the centre of mass from the edges 04 and OB.

A

0 B

6 A piece of uniform wire is bent to form the letter D. This letter D consists of a straight edge of length 2m, and
a semicircle of radius 1 m. The letter D is held upright with the straight edge in the vertical plane. The bottom
corner is denoted as O. Find the centre of mass from the corner O.
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@ 7 A uniform lamina is made from a square of side 2a joined to a semicircle of radius 2a. This semicircle is then
joined to another semicircle of radius 24, which is in turn joined to a smaller semicircle of radius a, as shown
in the diagram. Find the centre of mass from the edges 4B and AC.

o 8 Show that the centre of mass of this uniform lamina, in the shape of a trapezium, is given by:

. ah + 2bh a2+ab+b2)
3a+3b" 3a-+3b

14.3 Centres of mass of solids

Moving on from 2-dimensional shapes, we shall now consider 3-dimensional solids.
336 We shall look mainly at the cone and the hemisphere.

Consider rotating the line y = %x about the x-axis from x=0 to x =Ah, as shown in the

diagram. The shape formed is a cone with height # and base radius r. It is symmetrical
about the x-axis, and so y is zero.

To determine the centre of mass of the solid formed, we must consider a single ‘slice’
through the cone. A general slice will have radius y, thickness dx, and its volume d V" can
be written as my’dx.

Each slice will have mass pry?dx and is a distance x from the y-axis, so each slice
contributes to the moment.

h
The mass of the cone is then %pm‘zh, so Vx= J nxy>dx will give us the distance of the
0

centre of mass from (0, 0).

1 P 1, 11
So, —pnrihx = I prx| —x | dx, which becomes —hx = —|—x*
3 h 3 h2|4

0

. Hence, x= —?’—h.
0 4
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KEY POINT 14.6

The centre of mass of a right circular cone, of height / and base radius r, is given as G
when measured from the vertex.

(o)

WORKED EXAMPLE 14.11

A solid uniform cone of height 3¢ and base radius a has a smaller similar cone removed from it. The smaller cone
has height @. The resulting shape is known as a frustum. Find the centre of mass of the frustum when measured
from the smaller of its two plane faces.

Answer
3a 2a
1{2 <« Ia
Q

Large cone mass is l:mzp X 3a = na’p. First, find the mass of the frustum from the
3 difference in the masses of the two cones.

Small cone mass is l:rc s praﬂimﬁ
5 \a g

So the mass of the frustum is %mﬁp.

From O ): Use the vertex of the larger cone to take
ity
w502 59 — %2 g2 0 % PR
o i el i
So F=30p,
13
So from the smaller plane face %a —-a= %a. Subtract a from this result to get the

distance from the smaller plane face.

WORKED EXAMPLE 14.12

A solid uniform cylinder, of radius 2a and length 64, has a cone of height 3 and base radius & removed from it.
The cone removed has its axis of symmetry coinciding with that of the cylinder, and the plane face of the cone lies
in the same plane as one end of the cylinder. Find the centre of mass of the remaining solid when measured from
the opposite plane face of the cylinder.

Answer

<
Ay
\

Visualising the solid makes the question
much easier.

[
i

=
it L S—

-

S
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Mass of cylinder is 4na® X Gap = 24na’p. Find the mass of each part, subtracting
] the mass of the cone to get the mass of the
Mass of cone is gmz X 3ap = na’p. remaining solid.

Mass of remaining solid is 23za’p.

About the opposite face O: Take moments about the opposite end.
9 Remember the vertex of the conei1s a

24na’p x 3a — na’p X (3cz + Ea) = 23na’px distance of 3« from that face.

S0 T= 2904

For a solid uniform hemisphere, consider a quarter circle of radius r that is
rotated about the x-axis to form a solid. The hemisphere is made up of slices,
and each slice has radius y and thickness dx. As we calculated with the cone
earlier, each slice has volume dJ = my dx.

The equation of the circle is x* + P e

1
Each slice is a distance of x from the y-axis, and so each slice is contributing to E
the moment of the whole hemisphere. :

Let the mass of each slice be pmy?dx, and let the mass of the hemisphere be %pmﬁ.

H Then, taking moments about Oy for each slice, %pmj} = j prx(r? — x*)dx, then integrating
0

"
gives gmj} =z lrzx2 - lx4 , then with the limits, gmﬁf =T lr“ .Hence, x= ir.
3 2 4 o 3 4 8

: ; : ; A , 3
For a solid hemisphere with radius r, the centre of mass 1s along the line of symmetry ugr from the
centre of the plane face.

EXPLORE 14.1

Consider a solid uniform hemisphere, having centre O and radius r, with a smaller
hemisphere, also with centre O but with radius x, removed from it. In groups,
investigate what happens to the centre of mass of the remaining body as x — r.

WORKED EXAMPLE 14.13

A solid uniform cylinder of radius 3r and length 6r is connected by one of its plane faces to a solid uniform
hemisphere of radius 2r. Their lines of symmetry coincide and the density of the hemisphere is twice that of the
cylinder. Find the distance of the centre of mass of the solid from the plane face that is at the opposite end from
where the hemisphere is connected.



\
Y

% oF

Mass of cylinder: & x (3r)? x 6r X p = 54nr3p

: 2 ; 98
Mass of hemisphere: 3" X (2r) x 2p = 3P
Mass of shape: %‘imjp

About opposite face ©):
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This diagram shows the situation described in the
question.

You could also draw this as separate, smaller
diagrams of the cylinder and the hemisphere.

Determine the mass of each part, remembering
that the hemisphere has twice the density of the
cylinder.

Add the results together.

Take moments about the opposite face to

19 3 determine X.
S4nrip x 3r + ?mjp % (6}‘ + g X 2;‘)

Consider that you are making a toy that is to be formed by attaching a hemisphere to a
cone, as shown in the diagram.

This shape will be placed with the point A on the ground, where A4 is a point
on the rim of the hemisphere. The toy starts with 04 vertical. We would like
the toy to return to a stable position, that is when the apex (point) of the cone
is vertically above O and 04 is horizontal. We assume that the cone and the
hemisphere are made from the same uniform material.

The mass of the hemisphere is %mﬂp and the mass of the cone is %nrzhp.

Taking moments about OA4 O): %xrsp X %r = %xrzhp X éh

Here we assume that the toy balances when OA is vertical, so we consider A < f(r).

Solving gives > = %hz, which simplifies to 4 = v/3r. Since we want the toy to return to its

upright position, this means that # < v/3r.

WORKED EXAMPLE 14.14

A solid uniform hemisphere of radius 2r is joined to a solid uniform cone of height / and base radius . The cone
and hemisphere have their plane faces joined together. At the join, their lines of symmetry also coincide. If the
cone is twice as dense as the hemisphere, find a relationship between 4 and  so that the shape can balance when

both the plane faces are vertical.
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Answer

L h - Remember that the cone is twice as dense as the
hemisphere.
This object has its centre of mass at the join of the two
plane faces.

Mass of hemisphere: %n X (2 p= %s-mjp Find the mass of each part. Notice that you do not need

i , the total mass since the moments of the two parts must be

Mass of cone: —?)-:ru'zf-z X 2p = ém‘z,’?p equal for equilibrium.

Moments about the plane face: Balance the turning effects and determine / = f(r).

1 5

—6111‘3,0 X 2 Sap= %Icr-/’zp b _l,,h

3 8 3 4

So 4% = éhg, which means s = V24r.

=

A uniform solid cylinder, of radius r and length 4r, has a uniform solid hemisphere of radius r, of the same
material, attached to one of its plane faces. The plane faces of each solid coincide with each other. Find the
distance of the centre of mass from the opposite plane face of the cylinder.

< IS

@ 2 Two uniform cones with base radius r are joined together by their plane faces. Their lines of symmetry are
aligned. The height of one cone is 6r and the height of the other cone is 2r.

Given that the smaller cone is 50% denser than the larger cone, find the distance of the centre of mass from
their joint plane face.

@ 3 Find, by using integration, the centre of mass of a solid hemisphere of radius 2r, measured from its plane face.

4 A uniform solid cylinder has length 4a and radius 2a at each end. Centred on the plane faces are points 4
and B, respectively, such that 4B is 4a. At the plane face B, a hemisphere, of radius 2a and centre B, is
removed from the cylinder. Find the centre of mass of the remaining solid from the point 4.

@ 5 A uniform solid cone, C,, of base radius 1.5r and height 47, is connected to another uniform solid cone, C;, of
base radius 1.5 and height r. Given that the cones are connected by the faces of their planes, and that C, is
three times as dense as Cj, find the centre of mass from the vertex of C;.

@ 6 A toy is constructed by joining a hemisphere to a cone by their plane faces. Both the hemisphere and cone
have the same radius, r, and the cone has height 10r. Given that the density of the cone is p, and that the
density of the hemisphere is kp, find the value of k such that the toy can balance when the joint face is vertical.
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@ 7 The diagram shows a cylinder with a hemisphere removed from one end, and a cone attached to the other
end. Each part is solid and its mass uniformly distributed. The density of the cone is twice that of the cylinder.
Find the centre of mass from the vertex of the cone.

- — -y
< g

4r > ar

\4

P

2
=

i
N

@ 8 The diagram shows two uniform solid cylinders. The larger cylinder has density p and the smaller cylinder has
density kp. The cylinders are joined together by the faces of their planes, and their lines of symmetry coincide.
Find the distance of the centre of mass from the plane face that joins the two cylinders.

A

Sa

>
2 .

.

\-n.

14.4 Objects in equilibrium

Consider a uniform ladder, 4B, resting against a smooth vertical wall and a rough
horizontal floor. The ladder has a length of 2a and mass m. The ladder makes an angle

of & with the wall, where tané = %

Can we find the range of values for the coefficient of friction that would keep the
ladder from slipping?

First, we resolve forces horizontally to get F'= S. Then we resolve forces vertically to
get R =mg. If the ladder is to be prevented from slipping, then F < uR.

Next, take moments about B 0): § X 2acos@ = mg x asind

With sin6= % cos = %, we get S = %mg. Since F=S, F= %mg, hien %mg < wmg,

which leads to u = %

WORKED EXAMPLE 14.15

A uniform ladder is placed against a smooth vertical wall and rough horizontal floor. The ladder is of length ¢ and
mass 2m. The ladder is placed such that the angle between the ladder and vertical wall is 30°. A painter, of mass
5m, stands one-quarter of the way up the ladder and the ladder is on the point of slipping. Find the minimum
coefficient of friction required to prevent the ladder from slipping.
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Answer

30°

2mg

R(=): S=Fand R(1): R="Tmg.

About B O:

S xacos30=2mg x %sin 30 + Smg % %sin 30

3\/§n-rg
1 g,

Hengs, §'=

Then, using F < R, 34£mg < p % Tmg,

3v/3

SO Hmin = 28 g

Make sure you have a fully labelled clear diagram. showing
forces and angles.

Resolve forces 1n both directions.

Take moments about a point that eliminates the most
unknown forces.

Determine S.

Recallithat F= Si= 3fmg el oA Sl

EXPLORE 14.2

support your discussions and findings.

Discuss in groups the situations when g is quite large and close to 1. Can the value
of 4 be greater than 1? If so, in what situations would this occur? Research online to

WORKED EXAMPLE 14.16

A uniform rod of mass m and length 2a is held in equilibrium by a light,
inelastic string of length 2a, and by a frictional force due to the rod’s contact
with a rough vertical wall. The angle between the string and the rod is 60°,
as shown in the diagram. The rod is on the point of slipping downwards.

By resolving forces, and taking moments at an appropriate point, find a
range of values for p so that the rod does slip down.
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Answer

R(—): R=Tcos30 Resolve forces both horizontally and
vertically.

R(1): Tcos60 + F=mg

About 4 O: mg X asin60 = Tcos 30 x 2acos 60 + T'sin 30 x 2asin 60 Take moments about A.

. 1 3 V3
This gives T = Emg. So F= ng and R = ng. Evaluate 7.
/2
5 3 _muv3 e e S .

Then, using F < uR, i < ' or u =V3. Use limiting friction to establish a
range of values for .

Since we want the rod to slip, we need p < V3. State the correct range.

Consider a rectangular block placed on a rough, sloping plane and imagine that the
coefficient of friction is large enough to prevent the block from slipping. The block has
dimensions a X 2a x 3a, where 3a is the depth of the block.

The slope is slowly raised so that the angle increases until the object topples over. We need
to find the angle at which the block is about to topple.

a
a

When the block is about to topple, its centre of mass will pass through the last point on the
edge of the block that contacts the slope. In this case, the centre of mass is vertically above
the point C.

Notice that there is a small triangle that contains all the information we require. So when

the block is about to topple, the angle & can be found by considering tang = 2i = %
a

So the block topples when 0 = 26.6°.

WORKED EXAMPLE 14.17

A solid uniform hemisphere is placed on a rough slope, with its plane face against the slope. Assume the friction
force is great enough to prevent the hemisphere from slipping.

If the slope is inclined at an angle of 65°, state whether or not the hemisphere topples. Justify your answer.

If it does not topple, what is the maximum possible angle of inclination of the slope?

Answer

Let the radius be r. Quote the standard result for solid uniform hemispheres

Then, using the standard formula for hemispheres, e detihon = 8,

the distance from the slope to the point G is %r.
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d
4
From the diagram we need the length d=r Note that the weight passes through the lowest point only
for the hemisphere to topple. when d=r.

Clearly tanf = % or d= %rtan 0.

Zr

8
Using 8 =065° d= %r % 2.145 = 0.804r, and since Use the given angle to determine 4 and show it is less than r.

this is less than r, we can conclude that the State that it does not topple.

hemisphere does not topple.

The maximum angle comes from r = %rtan 0, Find the maximum angle, dertved from d=r.
8

or tand = %

So the maximum angle is 69.4°.

WORKED EXAMPLE 14.18

A shape is formed by joining a solid uniform cylinder to a solid uniform cone. The cylinder
has radius r and height r; the cone has base radius r and height 2r. The two solids are joined
by a plane face, and the lines of symmetry of the two solids coincide. This shape is placed on
a rough slope, as shown in the diagram.

If the slope is sufficiently rough to prevent sliding, find the angle at which the shape is about
to topple.

¥
Answer
Start with the centre of mass: Find the mass of each part, then work out the total
Mass of cylinder is np. mass.
Mass of cone is %m‘%.

S

So total mass of solid is Emr* D.
About base O:mrp X % + %m‘"’p X (r + %) = %mjpﬁ Take moments to find the position of the centre of

g s i mass above the slope.
So y= —{61
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Observe from the diagram that the required Next, work out the angle when the shape is about
angle is 6, and tanf = —. to topple. Use the centre of mass along with the
i cylinder’s radius to determine the angle required.

Therefore, 6 =48.0°.

Until now, we have been working with objects on a surface. We shall also consider objects
that are suspended by a given point.

For example, consider a letter D made from uniform wire. We shall model the D as a rod
of length 2a, and a semicircle of radius a.

If we hang the letter D from one of its corners, can we find the angle between the rod and
the vertical?

We must first find the centre of mass for the D (see Section 14.2). To do this we need to
know the masses. The mass of the rod is 2ap, the mass of the curved part is nap, and the
total is (& + 2)ap.

Take moments about the rod ©: 2ap X 0 + nap x % = (n + 2)apx, then x = 24?2'
T
¥ 2a
From the lower part of the diagram we can see that tan@ = g, which gives tanf = i >
T
So the angle between the rod and the vertical is @ = 21.3°,
WORKED EXAMPLE 14.19
An L-shaped uniform lamina is formed by joining two rectangles together, as shown in the diagram. [4 4r B
zF
a Find the centre of mass of the lamina from the edges 4B and AC. s
The shape is then suspended from the point 4. n
b Find the angle between 4B and the vertical. c b
Answer
a Splitinto 2r x 5 and 2r X 2r. Separate the lamina into smaller parts.
About AC O: Take moments about two perpendicular edges to

X A gi= s T determine the centre of mass.
10rp x r +4r7p X 3r = 14r°px, s0 X = 71’.

About AB D:

1012 x gr 4 v s s %r.

2 . ] A
leads to tan@ = & Write down the tangent of the angle in terms of X, 7.

J 22
Andso @ =52.8°.

b Using tané@ =

==
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WORKED EXAMPLE 14.20

The diagram shows a solid uniform cone joined to a solid uniform hemisphere.
The cone has base radius r and height 3r, and the hemisphere has radius r. The two
shapes are joined by their plane faces, and 4B is a diameter on that plane face.

If the density of the cone is four times that of the hemisphere, find the position of
the centre of mass relative to the line 4B. The shape is then suspended from point A.
Find the angle 4B makes with the vertical.

Answer

Mass of cone is ng,z X 3r X 4p = 4nrp. Determine the mass of each part first.

Mass of hemisphere is %m%.

Total mass is %m‘%. Total mass for the whole solid.
About AB O Take moments about the diameter 4B.
3 P 2 L
Anrip x jr - %'ﬁ:r”p X gr = 1?4751"3,0.\'
r TN e
Simplify: X ==r Obtain x.
56
33
56
H For the angle, tan = I—) which gives 8= 30.5°. Use this in a triangle with adjacent side equal to the
radius r.

Lastly, we shall look at objects sliding versus toppling. Consider a cuboid of dimensions
2a % 2a x 4a and mass m resting on rough, horizontal ground. We are going to apply a
force X at the top edge of the cuboid. This force will either make the cuboid slide along the
ground or make it topple about O.

As the force X increases, the reaction force gets closer and closer to the X o 2a
point O, and unless the cuboid slides it will topple over.
So resolving and taking moments, R(—): X = F, R(1): R = mg.

Then taking moments about O O: X x4a+ Rxd=mgXxa

4a
mga — mgd
Sy Ht 8 l
4a mg R
If X=0,d=a,so the reaction force is midway along the edge that
touches the ground. F. d
9]

If X= img then mea = mga — mgd, which gives d = 0. This means
the cuboid is on the point of toppling. Now we consider the possibility of sliding. If
X=F=uR, then if 4> %, the cuboid will topple before sliding.

mga — mgd

If X= %mg and = %, we note that X' = gives d = %a, which means the shape

a

will not topple. Then, noting that F ., = émg means that X > F, and we can see that the

cuboid slides.
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WORKED EXAMPLE 14.21

A uniform right-angled triangular prism, of mass 1, is resting on a rough horizontal XM
surface, as shown in the diagram. The triangle has sides a, 24, v'5a and the depth of
the prism is a. A force, X, is applied to the top edge, as shown. 2a
Determine in each case whether or not the prism breaks equilibrium. If it does, g A mgi RT 5
determine if it slides or topples. —
a-d d
1 3 1 1 1 1
a X=—mg,u== b X=-mg,u== cC X=-mg,u=-
3 g 1 4 4 & H 5 3 g, p 5
Answer
a Resolving R(—): X=F and R(1): R =mg. Always resolve forces, then take moments to set up

4 your system.
Moments about O O: X x2a+ Rxd=mg x ga

%mgu — mgd

So X =
2a
] 4 . T
So X = gmg =>d= Ga so it will not topple. d >0 so it will not topple.
Using F=uR weget F= %mg > %mg so It > X soit will not slide.

will not slide.

Equilibrium is not broken.

b With X= 4lmg =>d= éa so it will not topple. d >0 soit will not topple.

F= %mg < img so the prism breaks F< X sosliding occurs.
equilibrium by sliding.

¢ With X = %mg = d =0 so the prism is d =0 so toppling occurs.
about to topple.
= %mg = %mg so the prism topples F> X soitwill not slide.

but doesn’t slide.

WORKED EXAMPLE 14.22

A solid uniform cone, of base radius r and height 4r, is placed on a rough plane
inclined at an angle @, as shown in the diagram.

The coefficient of friction between the cone and the plane is 0.5. The plane is hinged
at the bottom, and it is slowly rotated so that @ increases. Giving a justification for
your answer, determine whether or not the cone topples before it slides.
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Answer
Resolving R(/7): F= mgsinfand R(\): R = mgcosé. Resolve forces parallel to the plane and
perpendicular to the plane.
Taking moments about O O: R x d + mgsind X > x 4r Split mg into components and take moments about
4 the bottom point of contact, O.
=mgcos@xXr

mgrcos @ — mgrsin @

Rearranging gives d =
mgcosd

Soif d=0 then cosd =sinf = & =45°. So the cone Determine the limit for toppling.
will be on the point of toppling if this angle is reached.

Assuming the cone is on the point of sliding, Use the resolved results to find the sliding limait.
mgsin @ = umgcosd, hence p=tand.

Since: ji =0.5,8 =26.6.

So the cone will slide before it topples, when  is 26.6°. State how equilibrium is broken.

1 A uniform solid cylinder, of radius  and height 5r, is suspended from a point on the rim of its plane face. It
is allowed to rest in equilibrium. Find the angle between the plane face of the cylinder and the downwards

348 .
vertical.

@ 2 A uniform solid cylinder, of radius 2r and height 7r, is resting on a sufficiently rough slope. The slope is
inclined at an angle a. Find the maximum value of a such that the cylinder is on the point of toppling.

@ 3 A ladder of length 4a is placed such that it rests against a smooth vertical wall and stands upon a rough
horizontal floor. The angle between the ladder and the wall is 30°. The ladder has mass 2m. Find the range of
values of the coefficient of friction, g, so that the ladder does not slip.

@ 4 A solid uniform cone, of base radius 2 and height 5a, is suspended by a point, B, on the rim of its circular
base. The centre of the circular base is denoted by C. Find the angle BC makes with the vertical.

5 The diagram shows a uniform lamina in the shape of a trapezium. The lamina is suspended from the point 4.
Find the angle between the vertical and the edge AB.

B

A 4a

@ m 6 A uniform ladder, of length 2a and mass m, is resting against a smooth vertical wall and a rough horizontal
floor. The ladder is making an angle of 30° with the wall, and the coefficient of friction between the ladder and

the floor is \1/_ An electrician, of mass &, is trying to ascend the ladder. Determine how far they can walk
243
up the ladder before it slips.
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Q 7 The diagram shows a uniform rod, of mass m and length 24, smoothly hinged to a vertical wall. A light,
inelastic string connects the rod to a point on the wall above the hinge. Find the magnitude and direction of

the force on the rod from the hinge.

20

B

@ 8 A solid uniform cone, of base radius r and height 6ér, has a similar smaller cone of height 2r removed from
the top to form a frustum. This frustum is placed, with its larger plane face, on a rough surface that is hinged
to the floor at one edge. The surface is slowly rotated so that the incline angle increases. Given that the
coefficient of friction is 0.85, find whether the frustum breaks equilibrium by toppling or sliding.

@ 0 9 A solid uniform hemisphere, of radius r, is placed onto a rough plane inclined at 45° to the horizontal. A force,
P, parallel to and up the plane, is applied to the hemisphere at a point that is % above the surface of the plane.
The highest point on the rim of the hemisphere that touches the plane is denoted by A4.

a Assuming that the friction is great enough to prevent slipping, find the value of P required to make the
hemisphere topple up the plane. Give your answer in terms of m and g

b Let u= % and let the hemisphere be on the point of slipping up the plane. Find the distance between the

reaction force and the point 4.

WORKED PAST PAPER QUESTION

Uniform rods 4B, AC and BC have lengths 3m, 4m and 5m respectively, and weights

15N, 20N and 25 N respectively. The rods are rigidly joined to form a right-angled TN
triangular frame ABC. The frame is hinged at B to a fixed point and is held in Im 5m

equilibrium, with 4 C horizontal, by means of an inextensible string attached at C.

The string is at right angles to BC and the tension in the stringis 7N (see diagram).

®

i  Find the value of 7.

A uniform triangular lamina POR, of weight 60N, has the same size and shape as the frame ABC. The lamina is
now attached to the frame with P, Q and R at 4, Band C respectively. The composite body is held in equilibrium
with 4, B and C in the same positions as before. Find

i the new value of T
i the magnitude of the vertical component of the force acting on the composite body at B.

Cambridge International AS & A Level Mathematics 9709 Paper 5 Q4 June 2008
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Answer

Moments about B :20x2+25x2+ 60 x % x 4 =5T. Hence, T=34N.

H iii Let the force be ¥, then R(1):Y + T'x % — 15420 + 25 + 60. Hence, ¥=92.8N.
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Checklist of learning and understanding

Moment of a force:

® A force F with perpendicular distance d from a point O has moment Fd about the point O.

Centres of mass, 2D lamina and frameworks:
® For a composite body made up of masses mi, m,, ... with distances xy, x,, ..., froma
reference point respectively, the distance of the centre of mass from the reference point is
Zx,m,
Zm,
For a iriangular lamina the centre of mass 1s (

x=
Xp+x+x3 V1 +H¥a+ )i
: G 3

(x1, 1), (x2, ¥2) and (x3, x3) are the coordinates of the vertices of the triangle.

), where

For a lamina of a sector of angle 2a radians from a circle centre O, with radius r, the centre of
. 2rsina ’
mass Is o from the centre of the circle.
(¢4

For an arc of a circle of angle 2o radians from a circle centre O, with radius r, the centre of mass

. rsina ;
is = from the centre of the circle.

Centres of mass, 3D solids:
® For a right circular cone, with height 4, the centre of mass is along the line of symmetry through
the vertex, at a distance -iih from the vertex of the cone.

® For a solid hemisphere with radius r, the centre of mass is along the line of symmetry gr from
the centre of the plane face. 8
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END-OF-CHAPTER REVIEW EXERCISE 14

@ :

A uniform beam 4B has length 2m and weight 70N.

The beam is hinged at A to a fixed point on a vertical wall, A B

and is held in equilibrium by a light inextensible rope. One

end of the rope is attached to the wall at a point 1.7m

vertically above the hinge. The other end of the rope is 1.7m

attached to the beam at a point 0.8 m from A. The rope is at

right angles to 4B. The beam carries a load of weight 220N

at B (see diagram). v
4 0.8m 70N

220N

i Find the tension in the rope.
ii  Find the direction of the force exerted on the beam at 4.

Cambridge International AS & A Level Mathematics 9709 Paper 51 Q4 November 2010

A uniform rod 4B has weight 6 N and length 0.8 m. The rod rests in limiting 75 T
equilibrium with B in contact with a rough horizontal surface and 4B inclined

at 60° to the horizontal. Equilibrium is maintained by a force, in the

vertical plane containing 4B, acting at 4 at an angle of 45° to 4B (see diagram). 0.8m

Calculate

i the magnitude of the force applied at 4, o

i the least possible value of the coefficient of friction at B.

Cambridge International AS & A Level Mathematics 9709 Paper 51 Q2 November 2012

p 08m g

The diagram shows the cross-section O4BCDE through the centre of mass of a
uniform prism on a rough inclined plane. The portion ADEQ is a rectangle in
which 4D = OE = 0.6m and DE = A0 = 0.8m; the portion BCD is an isosceles
triangle in which angle BCD is a right angle, and A is the mid-point of BD.

The plane is inclined at 45° to the horizontal, BC lies along a line of greatest
slope of the plane and DE is horizontal.

i Calculate the distance of the centre of mass of the prism from BD.

The weight of the prism is 21 N, and it is held in equilibrium by a horizontal
force of magnitude P N acting along ED.

ii a Find the smallest value of P for which the prism does not topple.

b TItis given that the prism is about to slip for this smallest value of P. Calculate the coefficient of friction
between the prism and the plane.

The value of P is gradually increased until the prism ceases to be in equilibrium.
iii Show that the prism topples before it begins to slide, stating the value of P at which equilibrium is broken.

Cambridge International AS & A Level Mathematics 9709 Paper 51 Q7 June 2015



Circular motion

In this chapter you will learn how to:
m relate angular speed (measured in rads™!) and linear speed

® apply the formula r@? or 17- (for the acceleration towards the centre of a circle) to problems

mnvolving horizontal circles and conical pendulums with constant angular speed and to problems
involving vertical circles without any loss in energy.
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PREREQUISITE KNOWLEDGE

Where it comes from | What you should be able to do Check your skills
AS & A Level Mathematics ' Resolve forces in two ; 1 Find the magnitude and direction of the
Mechanics, Chapter 3 perpendicular directions. ‘ resultant of the forces shown.

! . IN ¥ A 5N

AS & A Level Mathematics . Apply Newton’s second law ' 2 A block on rough horizontal ground is
Mechanics, Chapters 2 & 3 | with multiple forces. subject to three forces: a pulling force
' of magnitude 17.8 N acting at 20° above
the horizontal; a horizontal pushing
force, in the same direction as the
pulling force, of magnitude 8.9N; and a
resisting force of magnitude
f ' 22 3N. If the block has mass 4 kg, find

5 the acceleration of the block.
== = il R i

AS & A Level Mathematics | Calculate the potential energy | 3 A particle of mass 1.5kg is projected
Mechanics, Chapters 8 & 9 | and kinetic energy of a system 3 up a smooth slope inclined at 25°. The

at any point during its motion. particle has initial speed 22ms~ . If the
particle travels Sm up the slope, what is
its speed at that point?

What is circular motion?

Circular motion is the motion of a particle around part or all of a circular path. The circle
may be horizontal or vertical.

Examples of circular motion are all around us in real life, but some are more obvious than
others. The pendulum on an old clock and a conker on a string both move with circular
motion, but have you ever thought of cars racing in the Indianapolis 500 in the same way?
Because the track is banked, the cars are moving in the same way as a steel ball around the
inside of a circular bearing.

In this chapter we shall look at two types of circular motion: horizontal and vertical. We
shall discover that the acceleration of a particle moving in a circle is directed towards the
centre of the circle. We shall often use conservation of energy and Newton’s second law to
solve problems of circular motion.

In this chapter we shall use the symbols v for linear speed, w for angular speed, r for radius,
and a for acceleration. We shall use the abbreviations KE for kinetic energy and PE for
potential energy.

Unless stated otherwise, g =10ms™.



Chapter 15: Circular motion

15.1 Horizontal circles

Consider a particle moving in a horizontal circular path with constant speed.

g

The path is an arc of a circle, measured as 0. The rate of change of this distance %(rﬁ) 1s
de . de ; 5
equal to ra. So we have the relation v = ra or v=rw, as shown in Key point 15.1. The

quantity « = ?—;2 is known as the angular speed and is constant.
¢

To calculate the speed of a particle moving with circular motion, use:

da
V=r— or v=rw
f

The formulae in Key point 15.1 imply that, the larger the circle, the greater the speed must
be. The angular speed is the same whatever the size of the radius because it measures the
angle of travel over time, as shown in Key point 15.2.

The angular speed w 1s measured in radians per second, denoted as rads~!. One complete cycle is

X - 2T
2m radians, so the frequency, the number of revolutions per second, is =

WORKED EXAMPLE 15.1

In each case, convert either angular speed to linear speed or linear speed to angular speed, or calculate both
quantities, as appropriate:

a aparticle travelling in a circular path of radius 5m with angular speed 4rads™!
b a particle travelling along a circular path of radius 2.5m, with speed 4ms~!
¢ a particle travelling on a circular path with radius 2m, where the time to cover one complete circle is 65

d the Earth travelling around the Sun, where the path is assumed to be circular and of radius 1.496 x 10" m.

Answer
a Using v=rw,v=5x4=20ms"!. The first two examples just require you to
substitute values into the formula.
b Using v=rw,4=25w. Hence, w=1.6rads™".

¢ Since 2z is covered in 6s, @ = %’t = g rads™L. First determine the angular speed.
T 2n % .
Then v=2x = g BT Then find the linear speed.

d First, consider that 365 days is 31 536 000 seconds. Determine the number of seconds per year.




Cambridge International AS & A Level Further Mathematics: Further Mechanics

Then for a complete revolution: Note the angular speed is very small.
_ 2x

31536000

~ 1.99 x 10" rads™

Use v=ra: Calculate the linear speed.

y=1.496 % 10" x 1.992 x 1077
=29800ms™!

w

As an object travels in a circular path, its direction of motion constantly changes.

Because of this, the linear speed of the object is not actually constant. Consider two
points on the path of a circle, P and Q. Let the angle POQ be very small, §6. At the point
P we assume the speed is v. Then, since Q is very close to P, we can also assume that the
speed at Q has the components vcosd6 and vsin a6, where these components are parallel
and perpendicular to the tangent at P. Since sin8¢ ~ 80 and cosdf ~ 1, we can focus
on the acceleration parallel and perpendicular to the tangent at P.

) ) change in speed . . vcosdld —
Since acceleration = 2_—1?(, the parallel acceleration component 18 ugeabley = 0,
change In time ot
. . ; ) . vsindd — 0
and the perpendicular acceleration component, acting tow ards the centre, 18 —

. ; ; do .
E Hence, the acceleration acts towards the centre and is of magnitude v = This is
f

/)
. Vv . s
commonly written as rw® or —as shown in Key point 15.3.

D
. . ’ s . . . vV
The acceleration towards the centre for an object moving in circular motion1s a = — or a=rw’.

The link between v and @ is v = row.

2

Consider a particle travelling on a circular path of radius 1.2m. Its speed is 3ms~!. If the
mass of the particle is 2kg, can we find the force towards the centre?

2
We begin with F=ma=m"-.

. ; 32
Substituting the mass, radius and speed provided: F=2X 2

Hence, F=15N.

WORKED EXAMPLE 15.2

In each case, find the force towards the centre:

a a particle of mass 1.5kg, travelling with angular speed 4rads™!, where the radius is 0.5m
b a particle of mass 4kg, travelling with speed 5 ms~', where the radius is 2.4m

¢ a particle of mass 0.5kg, travelling around a circle of radius 20m in 12s.
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Answer
a Using F=ma, we have F=mra?. Note the type of speed and use the
So F=15%x0.5%x4? corresponding formula.
= 12N
2 2
b Using F=m—, we have 4 x —,
fi 24
So F= 123 .
3
: 2n ;m .
¢ Firstfind @ = T Determine the angular speed before
applying F=ma.
2 2
Then using F = mrw’ gives 0.5 x 20 x (g) = 517; =2.74N.

Now that we understand the idea of acceleration towards the centre of the circle, let us
ook at an example in context. Consider a particle that is attached to one end of a light,
inextensible string of length 2m. The other end of the string is attached to a point on a
smooth, horizontal table. The particle has mass |.5kg and it describes horizontal circles
on the surface of the table with angular speed 4rads™!. We want to find the tension in
the string.

Start with F=ma =mra?, then T=1.5x 2 x 4°, so the tension in the string is 48 N.

WORKED EXAMPLE 15.3

A particle is describing circles on a smooth, horizontal table. The particle is attached to a light, inelastic string
that is attached to a point, O, where the radius of the circles is 1.2m. Given that the tension in the string is 40 N,

and that the particle can complete one circle in 53_:: s, find the mass of the particle.

Answer

First use w = i—; =T1.2rads™. Find the angular speed.
5

Then F=ma gives 40 =m x 1.2 x (1.2)% Apply F=ma.

Som=23.1kg.

WORKED EXAMPLE 15.4

A particle is placed on a rough horizontal disc 4m from the centre of the disc. The
particle has mass 2 kg and the coefficient of friction between the particle and the
disc is 0.6. The disc begins to spin around slowly until the particle slips. Find the
frictional force on the particle when the disc is spinning at 2ms~!. Find also the
angular speed of the disc when the particle is on the point of slipping.
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Answer
Draw a fully labelled, clear diagram.

This helps you to see what is happening.

Py

Using F=ma, e have Use F=m ‘;—* to obtain the result. @m
R

F=2%==2N |
4

Recall from Chapter 14

At the slipping point, State the maximum frictional force that when an object
Frmn=R=06x2g= 12N, (see Rewind). is on the point of
slipping on a rough
Sp 12=2%4%a’ Use F=mro” to find the angular speed. surface, Fax = pR.
JE We can also write F.x
Hence, .w = T rads~!. | as B, which refers to

limiting friction.

WORKED EXAMPLE 15.5

Two particles are attached to a light, inelastic string of length 4. One particle, P, of mass m, is placed on a large,

358 smooth disc. The string is then threaded through a smooth hole in the centre of the disc. At the other end of the string
is the particle O, of mass 2m. The disc is spinning such that particle Q does not move and is 1.5a below the centre of the
disc. Find the tension in the string, and also find the angular speed of the particle P in terms of a as it moves in circles.

Answer

Since the string is of length 4« it is clear that the
radius of the circle described is 2.5a.

2mg N
@ does not move, so T'=2mgN Balance forces vertically for Q.
So T=mre’ gives 2mg =m x 2.5 X &’ Use F = ma with angular speed form for particle Q.

4g :
Hence, @ = \ﬁrad 571, Find w.
Sa
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WORKED EXAMPLE 15.6

A particle P, is placed on a large, rough, horizontal disc. P is of mass 3kg. P is then attached to a light, inextensible
string of length 2.4m. The string passes through a smooth hole in the centre of the disc, and at the other end is a
particle, 0, of mass 6kg. The coefficient of friction between P and the disc is 0.5. Q is hanging freely under the hole
in the disc. The disc begins to spin with P at a distance of 1.6 m from the centre of the disc. If () does not move at
any point during the motion, find the range of angular speeds possible.

Answer

The friction force will be used in conjunction
with the force towards the centre.

First, Fiy,=0.5%3g= 15N, and if Q doesn’t move 7= 60N. Determine the limiting friction and state the
tension in the string.

Slipping inwards: 60 = F + mrw? For slipping inwards, @ has a minimum
Then 60 =15+ 3 x 1.6w? value.
7
= Mrad s~
4
Slipping outwards: 60 + F = mre? For slipping outwards, w has a maximum
Then 75 = 4.8 @? value.
Iy
. W 10ra il
Hence., 3 6 . 10 State the range of allowed values.
» 4 ~ ~ 4

DID YOU KNOW?

Rollercoaster loops are never circular. They are actually constructed to form what is known as a
clothoid loop. On a circular track, the speed would decrease as you travelled around the loop with
constant acceleration and the roller coaster may not complete the loop. On a clothoid loop, the
radius is smaller at the top to keep the speed high enough.

1 Ineach of the following, use the relation v = r@ to determine the unknown value.
a v=4,r=06. Find w.
b v=06,w=3. Find r.
¢ r=5w=0.38. Find v.
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A particle of mass 0.2kg is attached to a light inextensible string of length 1.5m. The particle is moving in
horizontal circles. Find the tension in the string if the speed of the particle is Sms™".

A particle of mass 0.8 kg is attached to a light inextensible string of length 1.2m. The particle is moving in
horizontal circles. Find the angular speed of the particle if the tension in the string is I0N.

A particle is describing horizontal circles on a smooth, horizontal table. The particle is fixed to its circular
path by an inelastic string of length 1.5m. Given that the tension in the string is 45N, and that the mass of the
particle is 5kg, find the angular speed of the particle.

State also how many seconds the particle takes to describe one complete circle.

A particle is placed on a rough horizontal disc, 2a from the centre of the disc. The particle is of mass 3m.

The disc then starts to spin at an angular speed of \/4E Given that the particle is on the point of slipping,
a

find a range of values of p such that equilibrium is not broken.

A car is driving on a horizontal circular section of road that has radius 50m. The car is of mass 800 kg and the
coefficient of friction between the tyres and the road is 0.8. Find the maximum speed that the car can drive
around the road without slipping.

A particle of mass 1.5kg is resting on a smooth horizontal table. The particle is attached to a light, inextensible
string of length 2.5m. This string is passed through a smooth hole in the table. At the other end of the string is a
particle of mass 4kg. The particle on the table is set in motion and describes circles with radius 1.5m. Find the
speed of the particle on the table. Assume that the particle that is freely hanging does not move during the motion.

A particle is describing horizontal circles of radius a; the mass of the particle is m. Given that the particle can
complete one circle in 7 seconds, and that the particle is held in its path by means of a light, inextensible string
with tension 7, find an expression for the mass m.

A particle is placed on the inside of a rough, hollow cylinder of radius 2a. The cylinder is placed upright and

can rotate about an axis through its centre. The particle has mass m and the coefficient of friction is % Given
the particle does not slip as the cylinder rotates, find the speed at which the cylinder rotates.

A particle, P, is placed on a large, rough, horizontal disc. P is of mass 2.4kg. The particle is then attached

to a light, inextensible string of length 4m. The string passes through a smooth hole in the centre of the disc,
and at the other end is a particle, Q, of mass 3kg. The coefficient of friction between P and the discis 0.2, O 1s
hanging freely under the hole in the disc. The disc is set spinning with P at a distance of 1.2m from the centre
of the disc. If Q does not move at any point during the motion, find the range of speeds possible.

15.2 The 3-dimensional case

Consider a particle on the end of a light, inelastic string with the other end of the string
attached to a fixed point O. The particle is set in motion to describe small horizontal
circles. This is a conical pendulum model.
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Aummmmana

L

The string describes the curved surface of a cone as the particle moves in a circle below
the fixed point at O. The force towards the centre is now a component of the tension in the
string. The vertical component of the tension links to the weight of the particle. With this
kind of problem we must resolve into horizontal and vertical components first.

mg

R(1): Tcos€ =mg; h g = .
(1): Tcosd = mg; hence —

Then R( < ): Tsinf = mra?.

Since %: sind, it follows that T'sin = misin@w?, or T = mlw?.

Equating these two results gives @ = - :
{cos®

Assigning some values, let the mass of the particle be 2kg, the angle 30° and the string
length 2.5m.

=
Then the tension is 40;/§N and the angular speed is V 8\3/—3rad g1,

WORKED EXAMPLE 15.7

A particle of mass 1.5kg is attached to one end of a light, inelastic string of length 1.8 m. The string is attached to a
fixed point, O, at its other end. The particle is set in motion and describes horizontal circles with the string taut and at
20° to the downward vertical through the point O. Find the tension in the string and the angular speed of the particle.

Answer

A large. well-labelled diagram is essential
for mechanics problems.

Draw a diagram so you can resolve both
vertically and horizontally.

15

R(1): Tcos20 = 1.5g; hence, T= > 16.0 N. Resolve vertically to find T.
co
R(«):Tsin20 = 1.5 x r X w?* where r = 1.8sin20. Resolve horizontally using = ma
sin20 = 1.5 x 1.85in20 X @? Solve to find w.

cos20
Sow=243rads™!.
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If you are asked to find the speed of a particle instead of the angular speed, you need to be
careful when cancelling terms.

For the general case in the diagram at the start of Section 15.2, T'= is unchanged,

2

Isin@

Notice that the sin @ term does not cancel here. Keep in mind this term cancels only for
angular speed.

WORKED EXAMPLE 15.8

A particle of mass 3m is attached to a light, inextensible string of length 5a. The other end of the string is attached to
a fixed point, O. The particle is moving in horizontal circles about a centre that is 4a vertically below the point O.
By resolving vertically and horizontally, find the tension in the string and the speed of the particle.

COSs

but towards the centre, T'siné = m

Answer

............
----------
-

cosf = % and sind = % First note the sides of the triangle formed.
15 ; :
R(1): Tcos@ =3mg,andso T'= ng. Resolve vertically to find the tension.
v 15 3 m
R(+): Tsinf = 3m—, then —mg X == — p Resolve horizontally with this tension to
3a 4 5 @ 2 : i :
get v and substitute the earlier expression
found for 7.
3 =
Hence, v= ;\ffga. State the value of v.

Consider an object on a sloped surface, sometimes called a banked surface. Here, there is a
reaction force rather than tension in a string.

First consider the case when the surface is smooth. We shall have the same situation as that
of the conical pendulum. When there is friction, it is usually considered to act down the
slope. This is because the car is likely to slip up the slope due to excess speed.

Resolving vertically: Rcosf =mg + Fsinf

2
Then considering the forces towards the centre: Fcosf + Rsinf =m Er_
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If the car is on the point of slipping, F= uR.
m
Resolving vertically, Rcos@ — uRsing =mg,so R= *g—
cos@ — usinf

2 cosd + sind 2
Then from the force towards the centre, R(ucos@ + sin@) =m L so i—,—mg =mL.
r cosf — pusing F

" .. V2 i+ tand
If we then divide top and bottom by cos @, this gives — =g — .
r 1—putand

You do not have to memorise this result, but you should be able to derive it.

WORKED EXAMPLE 15.9

A car of mass 1000kg is turning on a banked road of radius 80 m. The incline of the road is 15° and the car is
travelling at 25ms™". The car is about to slip up the road.

a Resolve vertically and find an expression for the reaction force between the car and the road, in terms of
the frictional force.

b Resolve towards the centre of the circle.

¢ Find the coefficient of friction between the car and the road.

Answer
a R(1):Rcosl5=1000g + Fsin15 Resolve vertically. There are three forces.
So R= w Determine R.
cosls
2
b Rsinl5+ Fcos15 = 1000 x %5— Resolve horizontally towards the centre.
¢ Equating: Form an equation in terms of F only.

(10000 + Fsin15)tan 15 + Feos 15 = @

F(sin15tan15 + cos 15) = wzﬂ —10000tan 15

This gives F'=4958.105N, then R=11681.28N Determine a numerical result for # and
then for R.

Hence, u=0.424. Make use of F'=puR.

We shall also encounter problems where there is more than one force acting towards the
centre, for example, a particle with two strings attached. In Worked example 15.10, we
assume that a single string with a particle attached to the centre of the string can be treated
as two separate strings with different tensions.
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WORKED EXAMPLE 15.10

A light, inelastic string of length 2a is tied to a fixed, vertical pole at two points, 4 and B. 4 1s a distance a
vertically above B. A particle of mass 2m is attached to the midpoint of the string. The particle is then set in
motion to describe horizontal circles. Both parts of the string are taut at all times during the motion. Given that

the speed of the particle is 4‘j§ga, find the tension in both parts of the string.

Answer

By sketching a suitable diagram, we can
see that we have an equilateral triangle.

A

1
'
'
v
.

The particle at the midpoint of the string
splits it into two equal parts. Note that
their tensions are different.

Using a sketch shows that the upper string
2mg N must have a larger tension than the lower

string. This information will help you when
checking for errors.

R(1): T\ cos60 = T; cos 60 + 2mg Note angles are all 60°, and resolve.
2m X 2 ga
R(+): Tysin60 + T sin 60 = ——— Use Pythagoras or trigonometry to find the
364 av3 radius of the circular motion.
2
The force acts towards the centre.

V3 9mg W 2
So(Th+ Ty % = = then T, + T, = 6mg. Simplify the second equation.

& V3
Solving T =T, + 4mg gives Ty — T, = 4mg. Simplify the first equation and combine.
Gives T,=mg and T| = 5mg. Obtain both tensions.

1 A particle of mass 0.9kg is attached to a light inextensible string of length 2.4m. The other end of the string
is attached to a fixed point on the ceiling. The particle is describing horizontal circles with the string taut and
making an angle of 25° with the downward vertical. Find the speed of the particle.

2 A particle of mass 1.6kg is attached to a light inextensible string of length 1.4m. The other end of the string
is attached to a fixed point on the ceiling. The particle is describing horizontal circles with the string taut and
making an angle of 35° with the downward vertical. Find the angular speed of the particle.

3 A particle of mass 2kg is attached to a light, inextensible string of length 3m. The other end of the string is
attached to a fixed point on the ceiling. The particle is describing horizontal circles with the string taut and
making an angle of 30° with the downward vertical. Find the angular speed of the particle.



Chapter 15: Circular motion

@ 4 Acaris driving around a banked road inclined at 15° to the horizontal. The car has mass 1200kg and the
radius of the circular part of the road is 60m. The coefficient of friction between the road and the tyres is (.75,
and the car is on the point of slipping up the road. Find the speed of the car.

@ 5 A particle, P, of mass 3kg is attached to two light, inextensible strings. One string is attached at its other end
to a point, 4. The other string has its other end attached to a point, B. 4 is 4m above B. The particle makes
horizontal circles such that angle PAB is 30° and angle PBA is 60°. Given that the speed of the particle is
3.6ms™!, find the tension in each string.

@ 6 A hemispherical bowl of radius « is resting in a fixed position where its rim is horizontal. A small ball of mass

2m 1s moving around the inside of the bowl such that the circle described by the ball is gvertically below the

rim of the bowl. Find the speed of the ball.

@ 7 A light, inextensible string of length 4m is threaded through a smooth ring at the point O. One end of the
string has a particle, P, of mass 4kg, which is 1.2m vertically below O. Particle Q, of mass 1.6 kg, is attached
to the other end of the string. Particle Q is describing horizontal circles, with the string OQ making an angle
of 20° with the downward vertical.

a If particle P does not move during the motion, find the angular speed of Q.
b Find the number of complete circles described per minute.
@ 8 A caris moving on a circular section of road where the road is banked at 25° to the horizontal. The radius of

this section of road is 100m. The car has mass 1400kg and is travelling at 30ms~!. Given that the car is about
to slip up the road, find the value of u.

@ 9 A toy plane of mass 0.4kg is attached to one end of a light, inextensible string of length 6 m. The other end of
the string is attached to the point O. The string is taut and makes an angle of 45° with the upward vertical.
Find:

a the tension in the string

b the speed of the toy plane.

15.3 Vertical circles

The problems we have looked at so far involved motion in a horizontal circle but particles
can also describe vertical circles.

As the object moves around the circular path, it will gain potential energy due to the gain
in height. This gain in potential energy comes about when the kinetic energy reduces, so in
these situations the angular speed of the particle varies. This is the main reason we use the
Iinear speed for this type of problem.
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Consider a particle of mass m that is attached to a light, inelastic string of length r.

The particle is at rest in equilibrium before being projected with speed  from the lowest
point. Assuming there are no resisting forces, we can use the principle of conservation
of energy.

Considering zero potential energy when the particle is at a height level with the centre of
the circle, as seen in the diagram:

Initially, PE = —mgr and KE = %muz. Generally, PE = —mgr cosf and KE = %mvz.

For the particle to complete full circles, at the top of the circle it must have KE > 0.

This means that the particle continues to move after reaching the top. This idea is also
reinforced by the need to have tension in the string at the very top. If there was no tension
in the string, then the particle would no longer be travelling along a circular path.

5]

So considering F=ma towards the centre at a general point, T — mgcost) = 2

. g 1
Then from the principle of conservation of energy, %muz —mgr = Emv2 — mgrcosdo,
mv:  mut v . .
of Tomt 2mg + 2mgcosd. Combining these two equations gives

2
T — mgcosf = % — 2mg + 2mgcos, and if the tension is such that 7> 0, then

2
g = 2mg — 3mgcosf.

2

At the top point @ = 180°, and so HT > 5¢, giving u > V5gr. This is the condition for
complete vertical circles for a circle of radius 7, as shown in Key point 15.4.

For a particle to complete vertical circles of radius r, starting from the lowest point, the speed u
must satisfy the condition 1 = V5gr

WORKED EXAMPLE 15.11

A particle of mass m is attached to a light, inelastic string of length 2a. The other
end of the string is attached to a fixed point, O. When the particle is resting in
equilibrium below the point O, it is given a horizontal speed, u.

a Write down the minimum value of u required to complete a full circle.

b Given that u® = 16ga, find the greatest and least tension in the string.
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Answer

a Require uy;, = /522a) = /10ga.

b At a general point

3
T —mg cosf = L
2a

Initially:
PE = —2mga, KE = %muz

Generally: PE = —2mga cos0, KE = %mvi’-

By CoE:

Lo 2mga = Lo 2mga cos 6

2, 2

At the lowest point: @ = 0, 1> = 16ga

% L =Yg N

At the highest point: @ = 180°

So (; m) (16ga) — 2mga = %Mm’2 + 2mga,

giving v* = 8ga.

8mga
,80 Tyin=3mgN
a

Then T+ mg=

Note that the greatest tension
will always be when the particle
Is at the bottom of the circle.

The weight component plus
the tendency of the particle

to ‘escape’ the circular path
means this 1s where the tension
1 maximum.

Similarly, at the top the
tension is minimum since the
speed is at a minimum and
both tension and weight act
downwards.

Use u = V/5gr, with new radius.

Use F=ma generally.

Determine the energy of the
system at the start and ata
general point.

Assume conservation of
energy (CoE).

Find maximum tension at the
lowest point.

Use the angle at the top to find
the speed.

Determine the minimum
tension.

Consider a small ball placed on the inside of a smooth, hollow ring. We can model this in

exactly the same way as the particle on a string.

If a particle lacks the
energy to complete a
full circle it can behave
in two ways. If the
particle has enough
energy to travel beyond
the horizontal midline
of the circle, it will
leave the surface of
the ring and become

a projectile. If it does
not have enough
energy to reach the
midline, it will behave
like a pendulum and
eventually come to rest
at the lowest point of
the circle.
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In the absence of a string, the ball keeping contact with the inner surface of the ring
produces a reaction force towards the centre of the ring. Just as with the particle on a
string, if the particle does not have enough energy it will simply leave the circular path.
The particle still travels, but it is no longer in contact with the inner surface of the ring.

WORKED EXAMPLE 15.12

A particle, P, of mass m is resting on the inside of a smooth, circular ring, with centre O and radius a. The particle
is projected from the lowest point with a horizontal speed of W= %ga. Find the angle between the line OP and the

downward vertical at the point where the particle leaves the surface of the ring.

Answer

Initially: PE = —mga, KE = (1 m) (§g¢g> - 2 mga Determine the energy at the start and ata
2 2 % general point.

Generally: PE = —mga cos6, KE = %mvz

By CoE: jzmga + mgea cosf = %mvz (1) Use conservation of energy.
Using F=ma, R— mg cosf = 11.2,'4_ ) Resolve horizontally, towards the centre.
So R—-mgcosd = %mg + 2mg cosf. Combine the equations.

Hence, R= %mg + 3mg cosd.

When the particle leaves its circular path:

R=0 =cosf= —% Let the reaction be zero to find the point
where the particle leaves the surface.

F=09.67 Determine the angle at that point.

WORKED EXAMPLE 15.13

A particle, P, of mass m is resting on the inside of a smooth, circular ring, with centre O and radius a. The particle
is projected from the lowest point with a horizontal speed of u? = 3ga. Find the greatest height above O achieved
by the particle.

Answer

Label vour diagram with the same notation and
references as in the question.




Initially: KE = %mga, PE = —mga

Generally: KE = %mvz, PE = —miga cos6

]
By CoE: mg + 2mgcosé = %

2
2 mv*
Using F=ma, R— mgcosf = =

So R —mgcosf =mg + 2mg cosb.

; 1 . .
Since cosa = 5 we can split the speed into

components.

[ 22 i
v, = Ega smcx:T gga (Only need 1.)

Using v = u* + 2as,s0 0= %ga — 2gs,

.. <
gving §=—a.

27
So the total height above O isacosa + 5 = % a.

R =0 gives cosf = —%. With this angle v = SLga.
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Find the energy at the start.
Find the energy at a general point.

Use conservation of energy and multiply through by %.

Resolve towards the centre.

Let the reaction force be zero to determine the angle
and speed at the point when the particle leaves the
surface of the ring.

As the particle leaves the inner surface, note that
the angle & is important for the height of the particle
at that point, as well as the component form of the
speed.

Although it looks as if the particle is still moving
around the circle, its path is a tangent to the circle.
After this point, the particle will fall off the ring and
travel as a projectile under gravity.

State cosa and use it to find sina.

Determine the vertical speed component.

Speed at the highest point is zero.

State the greatest height achieved above O.

Instead of travelling on the inside or a circular surface, particles can travel on the outside.
Consider a hemispherical shell resting on a horizontal surface with its plane face at the
bottom. The hemisphere is smooth and has radius r. At the top of the hemisphere is a particle
of mass m. The particle is given a very slight push, to produce enough speed to get the particle
moving. Let us look at the situation where the particle leaves the surface of the hemisphere.
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Initially, KE = %muz and PE = mgr. Generally, KE = %mv2 and PE = mgr cosd.

. ; 1 1
Using conservation of energy: Emv2 = 5 mu® + mgr — mgr cos 0

2 2
If we multiply through by %, we get @ = @ + 2mg — 2mg cos .

??11)2

Next use F=ma towards the centre of the hemisphere to get mg cosd — R = —

2
or —R= % + 2mg — 3mg cos.

muz

5 + 2mg
When the particle leaves the surface, R =0and so cosd = T
mg
This result is quite useful. If « ~ 0 then cos@ = % so even with the slightest push the
particle will leave the surface of the hemisphere after 48.2°.

It also shows that when 2 = gr, cos@ = 1, and so 8 = 0, implying the particle leaves the
surface immediately after being given an initial speed of Vgr, as shown in Key point 15.5.

When a particle is projected from the top of a hemisphere, provided the mitial speedis O<u< Ver,

5
the particle will turn through an angle ¢, where 0 <8 < cos™! (?)

WORKED EXAMPLE 15.14

A particle of mass m is projected from the top of a hemisphere of radius a. The hemisphere has its plane face in
contact with the horizontal surface below it, and the hemisphere is to be considered smooth. If the initial speed at
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the top is 1 / % ga, find the speed of the particle at the moment it loses contact with the hemisphere.

Answer

It is usually easier to consider the zero
potential energy line at the centre of the
‘circle’. This reduces the number of
combinations of distances in your calculations.

Initially: KE = %mgm PE = mga Find the energy at the top.
Generally: KE = %mvz, PE = mga cos@ Determine the energy at a general point.
mv? 9 Use conservation of energy and combine

CoE; —== — 2mg 4 o
a 4 e this with the force towards the centre.
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2
my-
9
result to get mg cosf — R = ng — 2mg cosd.

When R=0, cos@ =§ and so v= iga,

Using F=ma, mgcosf — R = = Combine this with the energy

Obtain a result in R and cosé.

Find the speed at the point of loss of
contact.

WORKED EXAMPLE 15.15

distance OB.

Answer

0 2asin @ B

Initially: KE = %mgcz, PE = 2mga

Generally: KE = %mvz, PE = 2mga cos@

g
CoE: Z¥ - zmg — 2mg cosf
a3
. mv
Using F=ma, mgcosd — R = -
a

or mgcosf — R = %mg — 2mg cosd.

4+/2
So R:Oécosé’:%. We also have sin():\Tf.

Speed at leaving point is v = ]?ga.

So v, = vsinﬂz%z-‘flgjga.

A smooth hemisphere of radius 2a is fixed with its plane face against a horizontal surface. The centre of the plane
face is denoted as O. A particle of mass m is placed at the top of the hemisphere. The particle is then projected

horizontally with speed V %ga. The particle first lands on the horizontal surface at the point B. Determine the

The particle will lose contact with the
hemisphere at some point.

You can draw two diagrams: one for the
initial calculations and one for when the
particle leaves the surface.

Determine the energy at the two points, as
for similar problems.

Conservation of energy.

For forces towards the centre, remember
that the component of the weight is greater
than the reaction force.

Let the reaction force be zero to find the
angle at separation.

Determine the speed at that point.
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Use s=ut + %mz vertically to find the time taken to reach Determine the time to reach the ground.,
where s, = 2acoséd.
the ground, so Ea = ﬁggat + 1—g[2 |
- Gl 729° =

Solying this leads to ¢ = 1.146\/%,

7 (14
50 u_l,:vcosé)zg Ega.

Use §=ut togive s= 1.146\/2 %gu = 1112 Substitute into 5= uf for the horizontal
; distance covered.

4/2 e ol
So OBis 2ax i + 1.112a=2.37a. Add this distance to the initial distance
9 covered (2asind) before losing contact.

WORKED EXAMPLE 15.16

A particle, P, of mass m, is at rest on the lowest part of a semicircular piece of metal. The semicircle has radius a
and it is completely smooth. The particle is projected with a horizontal speed of V8ga.
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a Find the speed of the particle when it is just about to lose contact with the semicircle.
The particle then travels as a projectile until it hits the ground.

b Find the horizontal distance between O and the point where the particle hits the ground.

Answer
a Initially: PE = —mga, KE = 4mga Determine the energy at the start and at a
! general point, using O as the level of zero
Generally: PE = —mga cosd, KE = 3 mv? potential energy.
2
CoE: % = bimg + 2mgcosf Use conservation of energy.

From here, 8= 180° leadsto v=24/ga. Use the angle at the top to find the speed.
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b Distance to the ground is 2a, so 2a =0+ lgrz. Find the time to reach the ground below,
2 ; i

noting that v, = 0 at this point.

So t= 4—a

g
. da : :

Then using s=ut, s =2+/ga x F s 4a. Use that value of the time to determine the

horizontal distance travelled.

Hence, particle lands a horizontal distance of 4« from O.

We next need to look at special cases of the motion on the outer surface of an arc
of a circle. Consider a track that consists of two circular arcs, as shown in the
following diagram.

Imagine a particle starts at 4 and moves along the track to the point B, which is at the
same horizontal level as A. The particle cannot lose contact with the track between 4 and
B. The particle can, however, leave the track between B and C, providing it has enough
energy to do so.

Let’s look more closely at point 5.

As the particle reaches B it has speed v;, and as it climbs the arc BC the speed will reduce
to v;. This loss in kinetic energy will inhibit the particle’s chance to escape from the
surface. So if the particle does not escape the arc BC at the point B, it will never escape.

For the previous example, discuss the different ways in which a particle could be
projected from 4 and reach C.
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WORKED EXAMPLE 15.17

A particle is projected from the point O with speed U along a track that is made up of two identical quarter
circles, as shown in the diagram. Find the range of values of U such that the particle reaches B without losing
contact with the track.

Answer

First note that Up= U,. Since these are at the same level, the speeds
are the same.

At A: KE = lim U2, PE = mg x 30 cos45 = 15v2mg Determine the energy at 4 and at the top of
the arc, using the centre of the circle that forms
arc AB as the level of zero potential energy.

To just reach the top of arc AB, KE = %m v2, PE = 30mg. If the particle just reaches the top of the
arc, It can continue down to B.

374 i 1 -
CoE: Em V= Em U? + 15v2mg — 30mg Use conservation of energy and let the

speed be positive only at the top of the arc.

Need v> 0, %m U?> 30mg — 15V 2mg; hence, U> 13.3ms™. This is the minimum speed required to reach B.

2
Using F=ma, mgcost — R= il ;let 8 =45° and Resolve towards the centre. Assume the
assume the particle will leave the track (R =0). particle leaves the track at 4.
p
So mgcosdS = mi JEndgs °=212.13 Determine the speed required to leave the
) track.
Therefore, 13.3ms™' < U< 14.6ms™. State the range of values for U.

1 A particle of mass m is attached to the end of a light inelastic string of length 1.5a. The other end of the string
is attached to a fixed point O. When the particle is resting in equilibrium, it is given a horizontal speed of
Vga. Find the angle turned through when the particle comes to instantaneous rest.

2 A particle of mass m is attached to the end of a light inelastic string of length 1.2a. The other end of the string
is attached to a fixed point O. When the particle is resting in equilibrium, it is given a horizontal speed of
v/5ga. Find the angle turned through when the tension in the string is zero.



0@

0

Chapter 15: Circular motion

A smooth hemisphere of radius 1.6« is placed plane face down and fixed onto a horizontal plane. A particle

of mass 2m is placed on the top of the hemisphere and projected with speed v éga. As the particle travels

down the curved surface of the hemisphere it turns through an angle 8, where @ is measured from the vertical
through the centre of the hemisphere. Find the value of § when the particle loses contact with the hemisphere.

A particle of mass 2m is attached to the end of a light, inelastic string of length a. The other end of the string
is attached to a fixed point, O. When the particle is resting in equilibrium, it is given a horizontal speed of
Viga and consequently describes vertical circles. Find the greatest and least tension in the string.

A particle of mass m is attached to a light, inextensible string of length . With the other end of the string attached
to a fixed point, 4, the particle rests in equilibrium. The particle is then given an initial horizontal speed . Find the
condition on u such that the particle never leaves the circular path, but never completes full circles.

A particle of mass 3kg is resting on the inside of a smooth, circular hoop of radius 2m. From the bottom
position, the particle is projected horizontally with speed 8ms™!. Find the greatest height achieved by the
particle from the point where it is projected.

A smooth hemisphere, of radius 1.5a, is placed plane face down and fixed onto a horizontal plane. A particle,

of mass m, is placed on the top of the hemisphere and projected with speed 1 / %ga. As the particle travels

down the curved surface of the hemisphere the particle turns through an angle 6. Find the value of 8 when the
particle loses contact with the hemisphere.

A particle of mass m is resting on the inside of a smooth, circular hoop of radius 3a. The particle is then
projected from the lowest point, with horizontal speed u.

a State the minimum speed required to complete vertical circles.
b The particle is projected with speed v12ga. Find the speed when the particle has turned through 120°.

¢ Find also the reaction force exerted on the particle when the angle is 120°.

A particle is held at rest on a smooth, circular track, which is an arc of radius a. The track is standing in a vertical
plane, and it is fixed to a horizontal surface. The points O and A4 are such that OA4 is horizontal, as shown in the
diagram. The particle is released from rest and proceeds to slide down the track.

a Find the speed of the particle at the point where it is just about to lose contact with the track.

b Find the greatest reaction force on the particle while it is in contact with the track.

A string of length 2a is attached to a point O and has a particle of mass 3m attached to the other end. The
particle is resting in equilibrium. The particle is then projected with horizontal speed v15ga.

a Find the speed of the particle at the highest point of its circular path.

b Find the difference between the greatest and least tension in the string.
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(2] WORKED PAST PAPER QUESTION

A small bead (B) of mass m is threaded on a smooth wire fixed in a vertical plane. The wire forms a circle of
radius @ and centre O. The highest point of the circle is 4. The bead is slightly displaced from rest at 4. When

angle AOB = 0, where 6 < cos™! (%) the force exerted on the bead by the wire has magnitude R;. When angle

AOB =1 + 0, the force exerted on the bead by the wire has magnitude R,. Show that R, — R, =4mg.
Cambridge International AS & A Level Further Mathematics 9231 Paper 2 Q2 November 2008

Answer

Consider the potential energy equal to zero at the level of O.

7]
At the higher point: mgcosf — R = il
= a
1
PE = mgacosf,KE = Emv%
)
mv3

At the lower point: R, — mgcosf =
PE = —mgacosd, KE = %mv%
Adding the force equations gives R, — R) = %(v% iR

Now at 4: KE = 0, PE = mga, so by conservation of energy, mga = mgacos® + émvz,

leading to v} = 2ga(l — cos 9).
Also by conservation of energy, mga = —mgacosf + %mv%, so v3 = 2ga(l + cosb).

Hence, R, — R, = %(Zga — 2gacosd + 2ga + 2gacos @), which leads to R, — R; = 4mg.
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Checklist of learning and understanding

Governing equations for horizontal and vertical circles:

® For particles moving in circular paths of radius r, v = rw, where v is the linear speed and w is the
angular speed.

=

: !
® For the acceleration towards the centre, ¢ = rw® or a= i
' : s 2
® The time for each complete circle is given by =

For vertical circles:

9
® Using F'=ma towards the centre is generally of the form T — mgcos = mTl for strings and

2
v

R —mgcosf = ”i for particles travelling on the inside of a circular path.
a

Using F'=ma towards the centre for motion on a hemisphere, mgcosf — R = @

If the tension or reaction force is zero during motion, then the object has left the circular path

and 1s now a projectile.
Providing there are no resisting forces, the principle of conservation of energy states that

%mu2 +PE, = %mvz + PEj, where A and B are usually the starting point and a general point of

the motion.
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&)

1

One end of a light inextensible string is attached to a fixed point 4 and the other end of the string is attached to
a particle P. The particle P moves with constant angular speed 5 rad s in a horizontal circle which has its centre
O vertically below A. The string makes an angle 6 with the vertical (see diagram). The tension in the string is
three times the weight of P.

5rads’! q

i  Show that the length of the string is 1.2m.
ii Find the speed of P.
Cambridge International AS & A Level Mathematics 9709 Paper 51 Q3 June 2015

A smooth bead B of mass 0.3kg is threaded on a light inextensible string of length 0.9m. One end of the string
is attached to a fixed point 4, and the other end of the string is attached to a fixed point C which is vertically
below 4. The tension in the string is TN, and the bead rotates with angular speed wrad s~} in a horizontal circle
about the vertical axis through 4 and C.

i Given that B moves in a circle with centre C and radius 0.2m, calculate w, and hence find the kinetic
energy of B.

ii Given instead that angle 4BC =90°, and that 4B makes an angle tan™! (%) with the vertical, calculate
T and @.

Cambridge International AS & A Level Mathematics 9709 Paper 52 Q6 November 2011

A particle P of mass m is projected horizontally with speed % ga from the lowest point of the inside of a
fixed hollow smooth sphere of internal radius @ and centre O. The angle between OP and the downward vertical
at O is denoted by 8. Show that, as long as P remains in contact with the inner surface of the sphere, the

magnitude of the reaction between the sphere and the particle is %mg(l + 2cosd).

Find the speed of P
i when it loses contact with the sphere,

ii when, in the subsequent motion, it passes through the horizontal plane containing 0. (You may assume
that this happens before P comes into contact with the sphere again.)

Cambridge International AS & A Level Mathematics 9231 Paper 21 Q3 June 2012



Hooke’s law

In this chapter, you will learn how to:

m use Hooke’s law as a model to relate the force in an elastic string or spring with the extension or
compression

® use the formula to calculate the elastic potential energy stored in a string or spring and to solve
problems involving forces due to elastic strings or springs.
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PREREQUISITE KNOWLEDGE

Where it comes from | What you should be able to do Check your skills

AS & A Level Mathematics “
Mechanics, Chapter 2

Find the net force acting on a body. | 1 Two opposing, pulling forces
act on a body. Their magnitudes

| ' are 7N and 4 N. If the mass

' of the body is 2.5kg, and the

body starts from rest, find the

distance travelled by the body

in six seconds.

AS & A Level Mathematics

Determine the kinetic energy | 2 A particle slides down a smooth
Mechanics, Chapters 8 & 9 and potential energy of a system, | plane inclined at 30° to the

and be able to make use of the horizontal. The initial speed of

conservation of energy. the particle is 3ms~". Find the

| speed of the particle after sliding
\ for 14m down the plane.
|

What is Hooke’s law?

In the 17th century, physicist Robert Hooke discovered that, for part of the deformation of
springs, the extension of the spring is directly proportional to the force used to deform it.

H We know this relationship as Hooke’s law. It applies to the deformation of more than just
springs. It can be used for a range of applications, from inflating balloons for a birthday
party to calculating the amount of sway in a skyscraper in high winds.

In this chapter, we will look at questions in which strings are no longer inextensible. The force
required to stretch a string or spring will relate directly to its extension, that is how much it
lengthens. We shall also solve problems about more complicated systems, by considering the
energy stored in a spring. We shall use the symbols explained in Key point 16.1.

In this chapter, we shall use the symbols 7" for tension, x for the length of the extension, { for the
natural length of a spring, and 4 for the modulus of elasticity. Note that A 1s measured 1n N.

Unless stated otherwise, g = 10ms™.

16.1 Hooke’s law

In previous work we have worked on problems involving connected particles or particles
suspended by strings. The length of these strings did not change: they were considered
inelastic, or inextensible.

For elastic strings, the force required to stretch the string is directly proportional to the
length by which the string is extended. This gives us the relationship T « x, usually written
as T = kx. The constant k varies between different materials and it also depends on the

natural length of the string. We therefore use the form 7= é;—c Here, A is the modulus of
elasticity, which tells us how stretchable the material is, and / is the natural length of the

spring. This relationship is known as Hooke’s law. We tend to use the constant %, as shown

in Key point 16.2.
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It is better to use the constant ? than A as 4 has the same value whatever the length of the string.

Consider a light, elastic string of length 1 m. One end of the string is attached to a ceiling,
and the other end is attached to a particle of mass 2kg. If the system is at rest in equilibrium, !
and the string has modulus of elasticity 50N, find the length of the extended string,

For this example, first we resolve vertically so that 7'= 2¢N. Then using Hooke’s law,

ATX = 2g. Substituting the given values gives all o = 2g; hence, x = 0.4m. This means the AT x
length of the extended string is 1+ 0.4 =1.4m. \
In mechanics, a good diagram is the best way to start a question. You are strongly advised 2¢N

to try to sketch a diagram for every question you attempt.

WORKED EXAMPLE 16.1

A block of 3kg is attached to one end of a light, elastic string of natural length 2m. The other end of the string is
attached to a ceiling, and the string and block are at rest in equilibrium. Given that the extension in the string is
0.8m, find the value of A.
Answer
A Start with a clear diagram.
Ensure all information is added.
2m
Label distances and forces.
Y
A
AT 0.8m
. /
3gN
4 X20'8 =3g Use Hooke’s law.
=75 ="T5N Determine 4.

We shall also encounter problems involving elastic springs.

Springs can be stretched and are modelled in exactly the same way as elastic strings but A
with one major difference. A spring can also be compressed. T

Consider a light spring of natural length 1.2m that is fixed to a horizontal floor so that
the spring stands vertically. A mass of 4kg is placed on top of the spring so that the spring

compresses by a distance x. -
2

Given that the modulus of elasticity is 45N, can we find the value of x?
4gN

Instead of tension, there is a force known as thrust, due to the spring resisting compression.

o x‘ Hence, x = 1.07m.

Using Hooke's law, 4g =

\[WW\I\NW\‘J'\
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Let us consider stretching a spring. A light spring of unknown natural length 1s fixed to a
ceiling at one end, with a mass of 0.5kg attached to the other end. The spring is allowed to
hang in equilibrium such that the length of the spring is now 12¢m.

If the modulus of elasticity is 10N, find the natural length of the spring.

Since / and x are unknown, it is best to write first that /+ x = 0.12. Using Hooke’s law we

10X X o x=05l Then 1.5/=0.12, which gives /=0.08m.

know that 0.5g =

WORKED EXAMPLE 16.2

Both springs are vertical. 4 and C are vertically below B.

Given that ABis 4.5m, find the distance AC.

R(N): T1=T,+2¢ Resolve the forces vertically.

28560
o 7( L) Determine the upper force.
1.2
Th+2g= L + 20 Determine the lower force.
So 23R LT 20 = e + L2 Equate the forces.
1.2 16 1.2

Hence, x =0.336m and ACis 1.94m. Determine x and. hence, AC.

A light spring, of natural length 1.6m and modulus of elasticity 40N, is attached to a floor at point 4. The other
end of the spring is attached to a block, C, of mass 2kg. The same block is attached to a second light spring, of
natural length 1.2m and modulus of elasticity 25N, which is then attached to a ceiling at point B.

Answer
i '\ Draw a diagram.
1.2m Label all forces and lengths.
x Take care that you label the extension of the top
spring and the compression of the bottom spring.
T, (1.7-x)m
v
& A
xXm
2gN %{
l1.bm
T
% ¥
A

WORKED EXAMPLE 16.3

A light, elastic string, of natural length 2a, has a mass of 2m attached to one end.
The string is in a vertical plane and the system rests in equilibrium with the aid
of a horizontal force of magnitude mg.

If the string is stretched to a length of 2.54, find the tension in the string and the
modulus of elasticity.

2.5a

mgN
2mgN
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Answer
R(1): Tsiné = 2mg Resolve forces vertically.
R(=): Tcos 8= mg Resolve forces horizontally.
Hence, tanf = 2n72g =2, therefore sin @ = i Divide the equations to get tan#. Use the triangle
Lo V5 with sides of 1, 2, V5 to get sin @.
Therefore, T'x i{_ =2mg= T=+5mg N. Determine the tension.
V3
P My Smg = 4% .08 Use Hooke's law.
/ 2a
Therefore, A= 4&’5}?ng. Substitute to get A.
WORKED EXAMPLE 16.4
A light, elastic string of natural length 1.5m is stretched between the points A{ T ‘r‘B

A and B. A particle, P, of mass 3kg, is attached to the midpoint of the string,
The string rests in equilibrium with the parts of the string making an angle of
40° to the horizontal, as shown in the diagram. Find the value of the modulus

of elasticity.

Answer

Particle at midpoint of string = T =T,=T. Note that the tensions are equal.
R(1): 2T'sin 40 = 3¢ Resolve forces vertically.

T=23336N Use the tension for one half of the string.

355856 05
0.75

Since cos 40 = IA—Z; AP =1.632. Determine the new length for one half of the string.
Sox=1.632-0.75=0.8818m. Find the extension for one half of the string.

2 i
Hence, 1= ———’3'30355;;'75 =19.8N. Determine the modulus of elasticity.

1 Alight elastic string of natural length / and modulus of elasticity 4 is stretched by

a force T, causing the string to extend. In each of the following cases, work out It is better to use the

the unknown value. T 55
!

a T'=15N,4=40N,/=1.2m. Find the extension. A has the same value

b T=25N,/=1.5m, x=0.5m. Find the modulus of elasticity. Whate‘jer the length of
the string.

¢ T=(32-11)N,/=2m, x=0.5m. Find the tension in the string.
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A light string of unknown natural length is fixed to a ceiling at one end, with
a mass of 0.4kg attached to the other end. The string is allowed to hang in
equilibrium such that the length of the string is now 15cm. If the modulus of
elasticity is 20N, find the natural length of the string.

A light string is attached to a ceiling at the point A. The natural length of the
string is 1.3m and the string has a mass of 3m attached to the free end. The string
is allowed to rest in equilibrium. Given that the string is stretched by an extra 20%
in length, find the value of the modulus of elasticity.

A light, elastic string is attached to a ceiling at the point 4. The natural length of
the string is 1.6m and the string has a mass of 2m attached to the other end. The
string is allowed to rest in equilibrium. Given that the string is stretched by 40%
of its length, find the value of the modulus of elasticity.

Two points, 4 and B, lie 3m apart on a smooth horizontal surface. A light,
elastic string, of natural length 0.8 m and modulus of elasticity 70N, is attached
to A. Its other end is attached to a particle, P, of mass m. A second light, elastic
string, of natural length 1.3m and modulus of elasticity 50N, is attached to the
point B. Its other end is also attached to the particle P. The particle is allowed to
rest in equilibrium. Find the distance BP.

Two fixed points, 4 and B, are such that A is 4 m vertically above B. A light spring
of natural length 1.5m is attached to 4, and at the other end it has a particle of mass
6 kg attached. A second light spring of natural length 1m is attached to the point B.
Its other end is attached to the same particle. Both springs are in the same vertical
plane. Given that the modulus of elasticity of the lower spring is one-third of that of
the upper spring, and that the extension of one spring is six times the compression of
the other spring, find the modulus of elasticity of the lower spring.

A particle, P, of mass 3.5kg is attached to one end of a light, elastic string, of
natural length 1.2m. The other end of the string is attached to a fixed point, O.
The particle is allowed to rest in equilibrium with P 1.8 m below O.

a Show that the modulus of elasticity 4 is 7g N.

b The particle is now pulled horizontally to the side by a force of magnitude X' N
so that the angle between the string and the downward vertical is 60°. Given that
the particle is at the same vertical level as it was before, find the value of X.

A particle, P, of mass 4 kg is resting on a rough, horizontal table. A light, elastic
string, of natural length 2m and modulus of elasticity SON, is attached to P. It is
then passed over a smooth pulley to a second particle, 0, of mass 3kg. Qs hanging
freely below the table and the system is on the point of slipping. Determine the
coefficient of friction and find the extension of the string.

A particle of mass 2kg is being held in equilibrium on a smooth slope bya
horizontal force, P, and a light, elastic spring. The spring has modulus of
elasticity 10N and is attached to the particle and also to the slope 1.5m up
the slope from the particle. If the slope is inclined at 25°, and the force P is of
magnitude 5N, find the two possible natural lengths of the spring.
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0 @ 10 A particle of mass km is placed on top of a light, vertical spring of natural length
2a. The modulus of elasticity of the spring is 3mg and the spring is standing
upright so that it lies in a vertical plane.

a Find the compression in the spring in terms of & and a.

b Find the value of k such that the length of the spring is halved due to the
weight of the particle.

16.2 Elastic potential energy

When an elastic string or spring is stretched, or when a spring is compressed, elastic
potential energy (EPE) is stored in the system. This is the energy stored in strings and
springs as they are stretched or compressed.

For example, if an elastic string is stretched, then the work required to stretch the string is
related to the force applied and the length of the extension, x.

X2

Since work done is equal to force multiplied by distance, we can state that W:j Fdx.

)
Here the force being applied is considered over a distance x, — x;. If we use %}E as the

i Az
force, then the work done in stretching the string is J Txdx = [—}
0

. So the work required,
0 21

2
the elastic potential energy, can be written as EPE = % The units are joules, as shown in

Key point 16.3.

Work-energy principle: If a constant force acts on a body over a given distance, then the work done
by the force is equal to the energy gain of the object.

For example, a light elastic string, of natural length 1.5m and modulus of elasticity 50N, is
2
stretched to1.75m. To find the energy stored in the string use %

2
So EPE =29%0.25 _ ;43
2x1.5

WORKED EXAMPLE 16.5

Find the elastic potential energy in each of the following systems.

a A light, elastic string of natural length 2m and modulus of elasticity 100N, is stretched by 1.2m.
b Alight, elastic spring, of natural length 1.8 m and modulus of elasticity 50N, is compressed by one-third of
its original length.

¢ Alight spring, of natural length 34 and modulus of elasticity 4myg, is stretched to Sa.

Answer
2
EPE= y‘% Input all values into the formula.
3

=361 Include the units for energy.
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5,
b. EPE.= A x Substitute in the values.
2x1.38
One-third of length: x = 0.6 Determine the compression distance.

Therefore, EPE =51.
4mg x (5a — 3a)’
i 2% 3a

¢ E

= % mgal State the result.

Make a note of the extension in the spring.

As mentioned in Section 16.1, we may encounter questions that are more complicated.
Let us consider an example where a particle of mass 4kg is tied to two light,
elastic strings.

The top string has natural length 1m and modulus of elasticity 3gN. The bottom string has
natural length 1.2m and modulus of elasticity 2g N.

To determine the elastic energy stored in the system we must find the extension of each
string. Given that 4B is 4m, we can work out the middle part and then determine x.

R(1): Ty = T, + 4g, then using Hooke’s law on each string and equating the forces we get

3g(1.8-x) 2

il_) = % +4g. This leads to x=0.3m.

Then add the elélstic potential energy stored in each string to get
3gx1.5% 2gx0.3?

EPE = + =3451].
2x1 2x1.2

WORKED EXAMPLE 16.6

Xm

A
Il m
Ty ](1.3 ~¥)m
4gN ¢

I 11 2m
B

same particle P. Determine the amount of EPE stored in the system.

+
2x2a 2 1.5a
= 1.28mgal Work out the result.

Two points, 4 and B, lie on a smooth horizontal surface a distance 5a apart. A light, elastic string, of natural
length 2a and modulus of elasticity 3mg, is attached to 4 and then attached to a particle, P, of mass m. A second
light, elastic string, of natural length 1.52 and modulus of elasticity 7mg, is attached to B and then attached to the

Answer
e T T T Sketch a diagram showing the forces and
7. P appropriate lengths.
—e— up
R(=):T\=T, Resolve horizontally.
3mgxx Tmg(l.5a— x)
So—=+—"7-—"7"-"—"
2a 1.5a
Then 4.5mgx =21lmga— l4mgx. Simplify the equation.
Hence, x = %a ~ 1.135a. Determine the extension for each string.
3mg x (1.135a)*  Tmg x (0.3649a)’ .
Then EPE = :”(il Lg—“/) Sum the EPE for each string.
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WORKED EXAMPLE 16.7

A light, elastic string of length 2.5m has modulus of elasticity 65N. Find the work done when stretching the string
from 3m to 6m.

Answer
i) 65 % 0.5° . j
For 0.5m extension: EPE = T 325 Find the smaller extension EPE.
2%2,
. 65 x 3.5 ; _
For 3.5m extension: EPE = T 159.25 Find the larger extension EPE.
i
Hence, work done is 1567, Deduce that the energy required is the difference

between the two.

WORKED EXAMPLE 16.8

A light, elastic string, of natural length 2a and modulus of elasticity 7mg, has one end tied
to a point on a ceiling. The other end of the string is attached to a particle, P, of mass m. ’
A second light, elastic string, of natural length 3¢ and modulus of elasticity 5mg, is tied “
to P. Its other end is attached to a second particle, Q, of mass 3m. Q is vertically below P.
TI
With the system resting in equilibrium, both strings are taut. Find the elastic potential %
energy stored in the system. P
mgN iy
T,
X2
o
ImgN
Answer
Tmg X x . ;
For the upper string: 4mg = —i—l, S0 Xp = %a Upper string holds two particles.
a
, Smg X x, 9 Lower string holds only the
For lower string: 3mg = ————— 50 x, = Za. :
3a 5 lower particle.
Tmg X %az Smg X %az 349
Total EPE = + ="—mgal Add the two EPEs together.
2 X 2a 2% 3a 70

DID YOU KNOW?

Most materials, including many metals and even glass, follow Hooke’s law for part of their
movement in tension or compression.

Any material that, when stretched or compressed, does not return to its original form is said to be
plastic.
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0

A light elastic string of natural length / and modulus of elasticity 4 is stretched by an extension x, by means of
a force T, causing the string to gain elastic potential energy (EPE). Find the unknown value in each case.

a A=50N, x=0.5m,/=1.5m. Find the energy stored in the string.
b EPE = 100J, A = 60N, /= 1.2m. Find the extension of the string.
¢ EPE =50], x=0.8m, /= 1.6m. Find the modulus of elasticity.

Prove, using integration, that the elastic potential energy stored in a string of natural length / and modulus of

. . : :
elasticity 4 is %, where x is the extension of the string.

A particle of mass Skg is attached to one end of a light elastic string of natural length 0.8 m. The other end of
the string is attached to a fixed ceiling and the particle is allowed to rest, hanging in equilibrium. If the string
is stretched by an additional 80%, determine the modulus of elasticity. Hence find the elastic potential energy
stored in the string.

A particle of mass 3kg is attached to one end of a light, elastic string of natural length 1.2m. The other end of
the string is attached to a fixed ceiling and the particle is allowed to rest, hanging in equilibrium. If the string
is stretched by an additional 50%, determine the modulus of elasticity and, hence, find the elastic potential
energy stored in the string.

The points A and B are 4.5m apart, with A4 vertically above B. Particle P, of mass 2kg, is connected to 4 and
B by means of two light, elastic springs. The spring attached to point 4 has natural length 1 m and modulus
of elasticity 50 N; the spring attached to B has natural length 1.4m and modulus of elasticity 80 N. The system
rests in equilibrium. Find the EPE stored in the system.

A light elastic string has one end attached to a ceiling. The other end is attached to a particle of mass 3m. The
string has natural length 2a and modulus of elasticity 6mg. The particle rests in equilibrium.
a Show that the extension in the string is a.

b A smaller particle of mass km is attached to the existing particle. If the EPE increase is -gmga J, find the

value of k.

A light, elastic string of natural length 2.4m is stretched between two points, 4 and B, on a horizontal ceiling.
The distance 4B is 4 m. The modulus of elasticity of the string is 60 N. A particle of mass 3.5kg is attached to
the midpoint of the string. The system rests in equilibrium, with both parts of the string making an angle of
30° with the ceiling.

a Find the extension of the string.

b Determine the amount of elastic potential energy stored in the string.

A light, elastic string, of natural length %a and modulus of elasticity 2mg, is attached to a ceiling at the point 4.

The other end is attached to a particle, P, of mass 5m. A second light, elastic string, of natural length %a and
modulus of elasticity 8mg, is attached to P. The other end of this string has a particle, Q, attached to it. The
system is allowed to rest in equilibrium. Given that the mass of Q is 3m, find:

a the distance AQ

b the amount of elastic potential energy stored in the system.
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16.3 The work-energy principle

We can also model the motion of a system that is no longer in equilibrium. For example, if 1B
a particle hanging on an elastic string is pulled down further and released, what happens
next? We assume motion will happen. So in this section we look at acceleration and forces b4
at certain points in the motion. We use kinetic energy (KE), potential energy (PE), work
lost due to resistance, and elastic potential energy (EPE) to analyse the motion of objects. &

Consider a particle of mass 2kg that is attached to a light, elastic string, of natural length v
1.5m and modulus of elasticity 4¢ N. The string is attached to a ceiling at its other end. TA A
The particle is allowed to rest in equilibrium before being pulled down a further 0.5m and

then released. I ¥
Suppose we want to work out the speed of the particle after it has travelled 0.4m upwards. 2gN
We need to determine PE, KE and EPE at the start and finish. To do this, we must find the

. . 4gxe
initial extension e of the string. We use Hooke’s law to get 2g = = = andso e=0.75m.

Assign a zero potential point, then measure all potential energy relative to this point.

4g x (0.75 + 0.5)* 125

Initially, KE =0, PE =0, EPE = =g, and then finally
2x1.5 12
dg x (1.25 — 0.4)

KE = L2 PE = 2¢ x 0.4 and EPE = 8% ( y_28 By the conservation of

Z 2x1.5 300

2v2

energy, %g =1 +0.8g+ —‘;‘gg g, hence V* = %g, andso v= = 8 e L Thisisabant
1.79ms™"

WORKED EXAMPLE 16.9

A light, elastic string, of natural length 2m and modulus of elasticity 60 N, has one end attached to a point, 4, on a
rough horizontal surface. The other end is attached to a particle P of mass 3kg that is on the table. The particle is
pulled to the side so that the distance AP is 4m.

a If the coefficient of friction between the table and the particle is 0.4, find the speed as the particle passes
through the point 4.

b Find the initial acceleration.

Answer
< — Ty Sketch a suitable diagram.

_§ ,T 1 Label the forces and add distances.

A
Bau: 60 x 2° ! o
Initially: KE =0, EPE = Tk 60 Determine the initial energy.
%
At A:KE= % x 3v: , EPE=0 Don't balance the energy levels yet.
B = % % 3p= 12 Determine the maximum frictional force.

Energy lost to friction: Wy =12 x 4 = 48 Find the work done against friction.
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Conservation of energy: 60 = %vz + 48 Now balance the energy.
v=2v2ms! Determine the speed.
b F=ma,so T— F=3a Use Newton's second law horizontally, followed by
Hooke’s law to find T
5o MEE_ 1o gy
2
a=16ms™? Determine the initial acceleration.

Consider a smooth, horizontal disc of radius Sa, which has its centre at the point 0. A light,
elastic string, of natural length 2a and modulus of elasticity 3mg, is attached to the point O.

The other end of the string is attached to a particle of mass m resting on the surface of the Recall from Chapter 15
disc. The particle remains at rest relative to the surface of the disc when the disc is rotating that, for particles
about the point O with angular speed @. travelling in horizontal

circles, the tension
component is directed
towards the centre.

If the particle is describing circles of radius 3a, how can we determine the angular speed?

. Imgxa 3
First, use Hooke’s law, so 7= ————=—mg
2a 2
Next, use Newton’s second law towards the centre of the circle to get T'= mra?, and then

%mg=mx3a><m2.

So w= 1/ E1’ads'l.
2a
WORKED EXAMPLE 16.10

A smooth disc of radius 1.2m is fixed to a horizontal plane. The centre of the disc is O. A light, elastic string, of
natural length 0.8 m and modulus of elasticity 100N, is attached to the centre O, and the other end of the string
is attached to a particle of mass 0.5kg. The particle is describing horizontal circles with constant angular speed.
Given that the particle is on the point of falling off the edge of the disc, find the angular speed of the particle and
the total energy in the system.

390

If the particle is about to fall off the edge of the disc,
the radius of its circular path must be 1.2m.

- 1.2m 5

T= /IT\ 85 (= QOXSO L 50. Use Hooke's law to find the tension.

R(<): T = mro? - Resolve towards the centre. Obtain the angular
Then 50=05x 12X 0w’ =20 = 5V30 radsl, e

For the string: EPE = 100 x 047 =10 Find the EPE in the string.

2x0.8
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For the particle: Determine the linear speed of the particle.
v=rw=12x 5*3% =230

KE = % X % x 120 =30 Find the KE of the particle.

Hence, the total energy is 401J. Add the energies together.

WORKED EXAMPLE 16.11

A rough slope is inclined at an angle of 15° to the horizontal. A light, elastic string is

attached to the top of the slope at the point 4. The string has natural length 2.4 m and If a particle is
modulus of elasticity 150 N. A particle of mass 1kg is attached to the other end of the travelling along a
string. The particle is allowed to rest in equilibrium on the slope with the string taut. rough surface, then the
. . | frictional force will be
a Find the extension of the string, I

b The particle is pulled down a further 0.5m and released. Given that the the motion continues.

coefficient of friction between the particle and slope is 0.4, find the distance of
the particle from 4 when the particle first comes to instantaneous rest.

Answer

Since there are two stages for
the string extension, it 1s best to
label them e and x.

Resolving up the plane: 7'= gsin 15 = % Find the extension in the string.
Soe=0.0414m.
b At the low point: KE=0,PE =0 and Determine the energy before
: release.
EPE — 150 x 0.5414
2x24
=9.16

At the high point: KE =0, EPE=0 and Find the work done against gravity.
PE =dxgsin 15

=2.588d
Friction: F=0.4 x gcos 15 = 3.864 Determine the frictional force.
Wp=3.864 x d; hence, 9.16 = 6.4524. Find the work done against friction.
So d=1.42.

Hence, distance = 2.4 +0.0414 + 0.5 — 1.42 Total string length minus distance

= 1.52m from 4 travelled.
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WORKED EXAMPLE 16.12

A particle, of mass 2kg, is attached to one end of a light, elastic string of natural length 1.5m and modulus of
elasticity 50v3 N. The other end of the string is attached to a point, O, on the ceiling. The particle describes
horizontal circles with the string taut and 30° to the vertical. Find the angular speed of the particle.
Answer
.40 ; ,
R(1): Tcos30 = 2g; hence, T'= 7 Resolve vertically to get the tension.
3
Using Hooke’s law, T'= ’L;' which gives: Use the tension to determine the extension in the string.
4p  504/3xx
3 15
Hence, x =0.4m
R(=): Tsin30 = 2 x 1.95in30 X w? Resolve towards the centre, noting the radius of the circle is
1.951n 30.
40 2
7 =38xw Equate results to find .
3
So w=2.47rads™!

WORKED EXAMPLE 16.13

A particle, P, of mass 3m, is attached to one end of a light, elastic string of

natural length 5a and modulus of elasticity 8mg. The other end of the

string is threaded through a small, smooth ring, S, and a second 2a
particle, Q, of mass 5m is attached to this end. The particle P describes

horizontal circles with angular speed w. Particle O remains stationary

at a distance of 2a below the ring.

392

Find the extension in the string and the angular speed of Q.

——————
""""

-
HHHHHH

Answer
For Q: R(1)T = 5mg Particle O is in equilibrium.
. . 3 > 3 :
For P: R(1)Tsin @ =3mg, sosind= ) The same string so the tensions are the same.
Bmg x e ; .
Hooke’s law: Smg = B e Ea m Use Hooke’s law to find the extension.
(4]
For P: R(—)T'cos 8 =3m x (35! + éa) cos @ X w* Resolve towards the centre noting the radius of
8 the circular motion is (3a + e)cosé.
i 4 Y 4 49 5
con = E so this becomes Smg X - = I @ﬂ X ga)- Note that cosé cancels.

ISR, = ) %;L rads—!. Evaluate the angular speed.
a
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A particle of mass 0.4kg is hanging from a light elastic string. The string has
natural length 2m and modulus of elasticity 100 N. It is held at rest with the
string extended by a total of 1.2m. If the particle is released, find the kinetic Always draw a fully

energy after it has risen by 0.6 m. labelled diagram.
Include forces, lengths,

A particle of mass 2kg is attached to one end of a light elastic string of natural :
angles and points.

length 1.5m and modulus of elasticity 50N. The other end of the string is
attached to a fixed ceiling and the particle is allowed to rest, hanging in
equilibrium. The particle is then pulled down 0.3m and released. Find the speed
of the particle after it has travelled 0.4m upwards.

A particle, P, of mass 3kg is attached to one end of a light, elastic spring.
The other end of the spring is attached to a ceiling at the point 4. The spring
has natural length 1.6m and modulus of elasticity 45 N. The system rests in
equilibrium with the spring vertical.

a Find the extension in the spring.

b The particle is pulled down a further 0.6 m and released. Find the distance of
the particle below the point 4 when it first comes to instantaneous rest.

A light, elastic string, of natural length 2m and modulus of elasticity SON, is
attached to two points, 4 and B, by its opposite ends. The points 4 and B are

at the same horizontal level and they are 3.5m apart. A particle of mass 2kg is
attached to the midpoint of the string. The particle is then projected downwards
with speed u. Given that the particle comes to instantaneous rest 2m below the
level of 4B, find the value of u.

One end of a light, elastic string, of natural length 1.2m and modulus of elasticity
32N, is attached to a fixed point, B. A particle, P, of mass 1.5kg, is then attached
to the other end of the string. The particle P is held 2m vertically above the point
B and then released.

a Find the acceleration of P when it is |.5m above B.
b Find the kinetic energy of P when it is at the same horizontal level as B.
¢ Find the distance below B when the particle first comes to instantaneous rest.

A rough, inclined plane has a string attached to it at the point C. The string has
natural length 1.4m and modulus of elasticity 80 N. The string is then attached
to a particle, P, of mass 4kg. P is farther down the plane than C. The particle P
is then pulled down the plane so that it is 4m from C and released. Given that the
coefficient of friction between the particle and the plane is 0.5, and the plane has a
30° incline, find the speed of the particle as it reaches the point C for the first time.

A light, elastic string, of natural length 1.8 m and modulus of elasticity 45N,

is attached to a ceiling at point G. The lower end of the string is attached to a
particle, P, of mass 1.8kg. A second light, elastic string, of natural length 0.9m
and modulus of elasticity 35N, is attached to the particle and then to the point H,
where H is 4m vertically below G. The particle rests in equilibrium with both
parts of the string taut.

a Find the distance of P above H.

b Pisthen pulled down a further 1 m and released. Find the speed when the
particle is 1.5m above H.
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@ 8 A particle, P, of mass m, is moving in a horizontal circle, having centre O, with
angular speed 1/ 4§ The particle is attached to one end of a light, elastic string of
7

natural length 3¢ and modulus of elasticity %mg. The other end is attached to
a fixed point, C, which is vertically above O. The string makes an angle, 0, with

the downward vertical, where tané = % Find the elastic potential energy in the

string and the kinetic energy of the particle P.

@ 9 A particle, P, of mass 3kg, rests on a rough, horizontal table, where u = % Pis

attached to a light, elastic string of natural length 2m and modulus of elasticity
49N. The string passes over a smooth, fixed pulley at the edge of the table and

is then attached to a particle, Q, of mass 1kg. Q is held at the same level as the
pulley and released. Given that P is initially 1 m from the pulley, find the speed of
Q at the instant P begins to move.

(5] WORKED PAST PAPER QUESTION
1.25m i 1.25m

A —@- B

A and B are fixed points on a smooth horizontal table. The distance 4B is 2.5m. An elastic string of natural length
0.6m and modulus of elasticity 24 N has one end attached to the table at 4, and the other end attached to a particle
= P of mass 0.95kg. Another elastic string of natural length 0.9 m and modulus of elasticity 18 N has one end attached
to the table at B, and the other end attached to P. The particle P is held at rest at the mid-point of 48 (see diagram).

i  Find the tensions in the strings.
The particle is released from rest.
ii Find the acceleration of P immediately after its release.

iii P reaches its maximum speed at the point C. Find the distance AC.

Cambridge International AS & A Level Mathematics 9709 Paper 5 Q6 June 2007
Answer

T T

-
<

& L.
B r

> E—>—>

0.6m % 1-x 0.9m
i Forthestring AP: T = —24 ; 2'65 =26N
For the string BP: T, = - 3815 =7N
ii Using F=ma,26—7=0.95a. S0 a= 20ms™2.
i 3 . " 24 x ]8(1 = .-\’)
iii When the maximum speed occurs, acceleration is zero, hence T} = T, s0 06 = 5

Solving, 21.6x = 10.8 - 10.8x¢>x=%; hence, AC:UM}:%m
]




Chapter 16: Hooke’s law

Checklist of learning and understanding

Hooke’s law:

e T= i’f where 4 is the modulus of elasticity, / is the natural length of an elastic string, and x is
the extension of the string.
Also applies to elastic springs, in which the value of x is either an extension or compression of
the spring.
When a system is resting in equilibrium, the tension is constant and proportional to the
extension.

Elastic potential energy:

® Derived from the work done to extend or compress a spring or string over a certain distance.

This work 1s given by J A%dx.
0

2

: Ax aHlLs
Given as — and measured in joules.

Used in conjunction with kinetic and potential energy (the work-energy principle).
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1

A particle P of mass 0.28 kg is attached to the mid-point of a light elastic string of natural length 4m. The ends
of the string are attached to fixed points 4 and B which are at the same horizontal level and 4.8 m apart. P 15
released from rest at the mid-point of AB. In the subsequent motion, the acceleration of P is zero when Pis at a
distance 0.7m below AB.

i Show that the modulus of elasticity of the string is 20 N.

ii Calculate the maximum speed of P.

Cambridge International AS & A Level Mathematics 9709 Paper 51 Q5 November 2010
4.8m

A particle P of mass 0.35kg is attached to the mid-point of a light clastic string of natural length 4m. The ends
of the string are attached to fixed points 4 and B which are 4.8 m apart at the same horizontal level. P hangs in
equilibrium at a point 0.7m vertically below the mid-point M of 4B (see diagram).

i Find the tension in the string and hence show that the modulus of elasticity of the string is 25N.
P is now held at rest at a point 1.8m vertically below M, and is then released.
ii Find the speed with which P passes through M.
Cambridge International AS & A Level Mathematics 9709 Paper 51 Q6 June 2010

The ends of a light elastic string of natural length 0.8 m and modulus of elasticity AN are attached to fixed
points 4 and B which are 1.2m apart at the same horizontal level. A particle of mass 0.3 kg is attached to the
centre of the string, and released from rest at the mid-point of 4B. The particle descends 0.32m vertically
before coming to instantaneous rest.

i Calculate 4.
ii Calculate the speed of the particle when it is 0.25m below 4 B.
Cambridge International AS & A Level Mathematics 9709 Paper 53 Q4 June 2011
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PREREQUISITE KNOWLEDGE

Where it comes from , What you should be able to do } Check your skills

AS & A Level Mathematics | Differentiate and integrate i 1 a Find the derivative of 3¢*.
L { . 3 oy ;

Pure Mathematics 2 & 3, functions such as 2, (2¢ — 5)* and b Integrate sin 4.

Chapters 4 & 5 - cos 2t. . .
! ¢ Differentiate e’ cos 7.

AS & A Level Mathematics Separate the variables of a 2 a Separate and then integrate
Pure Mathematics 2 & 3, | first order differential equation. ; dv £

| ‘ — =— tofind v=1{(2).
Chapter 10 i ’ dr Vv

b Solve e"‘ﬁz -2y to get v=f(x).
| dx

When do variable forces affect linear motion?

If an object falls through the air we like to assume that the air resistance is either negligible
or constant. In fact, air resistance is a variable force that changes as the speed of an object
changes. This type of variable force causes the acceleration of the object to vary, too.

Linear motion deals only with objects travelling in straight lines. When these objects
experience forces that do not change, the object will either be:

E e at rest or moving with a constant velocity; see Newton’s first law, or

e moving with a constant acceleration, if the net force is a non-zero constant; see Newton’s
second law.

If the net force is non-zero, and it varies with time or distance, linear motion will be
affected. This concept is the basis for motion as simple as standing up from a chair, and as
complex as designing supersonic planes.

In this chapter, you will look at objects that are travelling under the influence of a variable
force. This, in turn, will produce an acceleration that is variable. These systems will be:

e cither set up first as differential equations such as d =f(¢) or v L g(x), before being
;e e di dx
solved with initial conditions or

e described in terms of displacement or velocity as functions of time.

In this chapter, we shall use the symbols F for force, a for acceleration, v for velocity, x for
displacement and ¢ for time.

Unless stated otherwise, g = 10ms™.

17.1 Acceleration with respect to time

In AS & A Level Mechanics, you saw Newton’s equations of motion as well as models that
involve motion with variable acceleration for basic cases.

Let us remind ourselves what we have learned previously. Acceleration is the rate of change

. . . ; ; ; d
of velocity over time. This means acceleration can be written in the form d—v Another way
t



Chapter 17: Linear motion under a variable force

of confirming this result is to start with displacement, differentiate once to get %)f, which
4

2 2
is velocity, then differentiate again to get d—x Now, since g% = d(d_x)’ we can see that
ds? d2  de\dr

3 . v
acceleration can also be written as ar
2
Consider a particle that is travelling in a straight line with variable acceleration « = —2¢ms™2.
If the initial velocity is 4ms~!, can we find the velocity function in terms of time?

Start with a = % = —2¢. Integrating both sides with respect to time gives J% dr = WZJ tds,

or Idv = —ZJtdf. Integrating, we get, v = —* + ¢, and with an initial velocity of 4, this
means when v=4,t=0 andso ¢ =4.

So, the velocity function in terms of time is, v =4 — Zms™L.

WORKED EXAMPLE 17.1

A particle is travelling in a straight line with a = sin 2¢ms~2 It passes through the point O with speed v= % ms~!
at time ¢ =0s. Find:

a vintermsof¢

b the displacement, x, in terms of ¢, relative to the point O.

Answer

Write down the differential equation and separate

a Let a:gzsin 2t, then Jdv:Jsin 2tdt. -
dr the variables.

So v= =t cos 2f + ¢, Integrate both sides.
When v= g, t = 0; hence, ¢ = 5. Use the 1nitial conditions.

Hence, v=15 — % cos 2tms™.

B far v dx _ = i 808D, Write down the differential equation and separate
dr 2 the variables.
Then de - J (5 e % cos 2f)dz‘.
Hence, x = 5¢ — i sin 21 + k. Integrate both sides.
When x=0,¢=0; hence, k =0. Use the initial conditions.

So x=5¢t- %Sil] 2tm.

Now we shall consider where this variable acceleration comes from. Consider a particle
that has a force of 2/2 N acting in the direction of motion of the particle. If the particle has
amass of 2kg, we can work out the velocity as a function of time .

Starting with F = ma, we have 22 =2 % then % =7 So Jdv = Jzz dt, then v= %f +ec.

If we know the initial conditions, we can determine the value of the constant c.
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WORKED EXAMPLE 17.2

A particle of mass 4 kg is travelling in a straight line under the influence of a single opposing force. This force has
magnitude e*¥N. If the particle passes through a point, O, at time ¢ = 0s with velocity 2ms™, find expressions
for both velocity and displacement in terms of 7.

Answer
Use F=ma to get —e%5 = 4513‘ Note that the force is opposing, so it is a negative force.
dt
Then % = *é e, Set up the differential equation.
i
So Jdv - —‘l-JeO'Sf dr.
4
Therefore, v= —% el g ¢, Solve for v.
Usitg v=2,t=0 gives €= = Use the initial conditions.
Hence, v = 3 % & Y, Find the first expression.
dx_5 1 g5 :
Next, let i et Set up the second equation.

then Jd_\" = ;J (5 i CU.S[)dL

5 5
m SG &= 5&‘ - ¢%% 4+ k, when measuring from O.

Whenx=0,t=0: Use the initial conditions.
Andso 0=0—-1+k=>k=1. Note the constant 1s not always 0.
Hence, x = gt =P 1, Find the second expression.

If you are given a velocity function such as v = (2 - 3)* - 4ms™' and asked to find
the acceleration, you can differentiate this expression using the chain rule to give

dv
dr
Similatly, if you are given x = e’ and you are asked for v=1£(z) or a=g(1),

= —3 % 2 x (2 — 31). Hence, the acceleration is @ = —6(2 — 3)ms™2.

then, for this example using the product rule, v = %)?c =lxe +ixe =¢(r+1)
2
Then a=dx:g—vzl><ez+(r+ ) xe =e'(t+2).
drr  dt

So y=e/(t+ 1)ms™' and a=¢(t+2)ms™2
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WORKED EXAMPLE 17.3

A particle is travelling along a straight path such that its displacement at time ¢ is given by the expression
x=2In(”+ 1) — 2m. Find the time when the velocity is at a maximum.

Answer
From x=2h{f +1) -2, & = Zy 21. So v= 74[ : Differentiate to get v.
dr g1 241
) ) dy P+1D%d—8x T 4(1 - 1) Differentiate again to get a to find
Then using the quotient rule — = ,50 g =———, iy >
dr (2 + 1) (2 + 1) when the velocity 1s at a maximum.
Vmax OCcurs when a=0,s0 1 —2=0 means 7= ls. Let =0 to find time. Notice we
discard the negative value for time.
You will have learned in AS & A Level Mechanics that the area under a Av
velocity—time graph represents the displacement. So, to determine the area we

b
consider the integral J vdz, where the values of a and b are times during the
£ ¢
motion. So x = J vdr gives the desired result.
]
For example, if we are told that a particle is such that the velocity at time ¢ is given
as v = * + 2¢, then to find the displacement of the particle after four seconds, let

4
x= [ (£ + 20)de.
0

WORKED EXAMPLE 17.4

A particle is travelling along a straight line such that v= £ — 2 + 2ms~". Find:
a the acceleration when #=2
b the distance travelled during the third second.
Answer
a % =3%—2¢ 80 @=3F % Differentiate to get a.
{
When t=2:a4=12-4=8mg> Determine the value.
b For the third second, we need t=2 to ¢=3. Note what ‘third’
second actually
represents.
3 1 1 3 m—
v | e = A L J [
Se x= L(r t° + 2)dt L { 3 £+ 2t ; Integrate to get x. .
) 1 1 1 1 g s its direction during
This 1s (Z x 81 — i x 27 + 6) - (4 % 16 — e X 8 + 4). Substitute in limits | its motion, then the
to find the value. | distance travelled will
So x= @ m. not be the same as the
12 displacement.
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. ~ 3 .
Explore functions such as v=¢ —rms™" for 0 <1< = and v=7£ -3+ 2tms™!

for 0 < ¢ < 2. How would you approach this type of problem?

10

11

In each case you are given the displacement function of a particle. Find the velocity and acceleration at the
time given.

a x=304+58,t=2 b x=e¥-5t=0 ¢ x=5h@+D+2t=3

A force of magnitude 7* N is applied to a particle of mass 0.3kg, resting on a smooth horizontal surface, for
two seconds. Find the speed of the particle after the two seconds.

A particle of mass 0.5kg is travelling on a smooth horizontal surface with a constant speed of 4ms™. A force
of magnitude kt N is applied to the particle to slow it down. Given that the particle comes to rest after three
seconds, find the value of k.

A particle is travelling with velocity function v = lzm s7! Given that x=2m when 7= 1s, find x =1f(2).
t

What does this tell you about the displacement of the particle?

A force of magnitude (4¢+ 3)N is applied in the direction of motion of a particle of mass 5kg. The particle
travels in a straight line. Given that the particle is already travelling at 5ms~! when the force is initially
applied, find the velocity after a further two seconds.

An opposing force of magnitude 22N is applied to an object of mass 2kg. At the time when the force begins
to act, the object is already travelling at 3 ms~" and is passing through the point O. Find expressions for the
velocity of the object, and the displacement relative to the point O.

A particle is travelling in a straight line with displacement function x = te”'m. Determine the time when the
velocity is at a maximum.

A truck of mass 12000kg is driving at a constant speed of 15m s~!. The truck driver sees a red traffic light
100m ahead and applies the brakes. This produces a braking force of magnitude 300#2 N. Will the truck stop
before reaching the traffic lights?

A particle travels in a straight line with velocity v =2 + sin tm s~L. It passes through the point O when t=0s.
Find the displacement from O after four seconds.

A ball of mass mkg is dropped from a very high tower. Due to air resistance the ball is subject to an opposing
force of magnitude mkvN, where k is a constant and v is the velocity of the ball. Show that v = %(1 — e

and state the terminal speed of the ball, assuming that it does not hit the ground first.

A particle passes a point, O, with speed 12m 57!, travelling in a straight line. The acceleration of the particle
is —4rms2. Find:

a the time taken for the particle to be at instantaneous rest

b the distance travelled during this time.
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o @ 12 A toy rocket, of mass 1kg, is modelled as a particle. It is launched from rest using its engines, which produce a
force of size (20 — /)N and have enough fuel for five seconds. After five seconds the rocket will be subject to

one force only: its weight.

a Show that, for 0 <7< 5, % =2(5-71).

b Find the velocity when ¢ = 5s.

¢ Find the maximum height achieved, to the nearest metre,

17.2 Acceleration with respect to displacement

As well as measuring the motion of objects with time, we can also measure using displacement.

Consider a particle moving such that the acceleration is given as a = —%m s72. Suppose we need
X

to find v =f(x), given that v=2ms™" when x = 1 m. To solve this, we must set up a differential

equation.

We cannot use % = —é since the variables do not match. But if we use the chain rule on
f

= = v s d—x, then v i = —g, as shown in Key point 17.2. Separating the variables gives
dr dx dr dx x2

fv dv= —J—zz— dx. Then integrating gives %vz = % + ¢, and using the initial conditions we
X

-1

find ¢=0and v=ims
X

Q)

In order to solve differential equations involving acceleration and displacement. use the acceleration

dvy
form a=v—.
dx

DID YOU KNOW?

By considering an object with initial velocity u, general velocity v and constant acceleration k, you

dv dvy
can use T k and v T k to obtain Newton’s equations of motion. These are also known as

x
SUVAT equations since they involve the variables s, «, v, ¢ and ¢.

WORKED EXAMPLE 17.5

A particle is travellmg in the direction Ox away from the point O with acceleration a = 2(x — 1)*>ms~2. Given that
the velocity is4ms™ when x = I m, find the velocity when x =4m.

Answer

Let & % = 2(x — 1)2, then JV i J-z(x TP fgz?ﬂv;tl;lt:f differential equation and separate
So %v (x ~ 1P+ B Integrate both sides.

When mes =15 rat %vz 2 %(x D4R, U T s

When, & =l L 98= 2 2l £ B gy 0Tl Determine the velocity at the given point.
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WORKED EXAMPLE 17.6

. T
¢ Find v when x = gm.

Answer

a The particle slows down as the acceleration
becomes more negative.
—sin x
x5

b vﬁ = —tanx, then Jvdv = j :
dx CO8 X

1
So ;vz = In|cos x| + ¢.

== S e= 8.

Then %vz = In|cos x| + 8.

Hence, v = v2In|cos x| + 16ms™".

C ov=4 [21n cos%} +16 ~3.82ms~ .

travels in a straight line, and when x = 0m it passes through the point O with velocity 4ms™".

A particle is subject to forces that produce an acceleration of a = —tanxms 2, where 0 < x € T The particle

1

a Describe what happens to the particle after passing through O.

b Find the velocity of the particle in terms of the displacement.

a < 0, so the particle must decelerate.

Separate the variables and move the negative sign
inside the integral.

Integrate both sides.

Use the initial conditions.

State the expression.

Substitute in the values.

WORKED EXAMPLE 17.7

towards O, find:
a the velocity of the particle when x =4m

b the value of k.

Answer

a Let vdv = -2x.
X

Then J\-’ dii= —ZJ_\" dx.

|
Hence, Evz =—-x’+c.

Leading to v=v144 — 2x’ms".
When x =4, v=4vTms™ .

When x=0,v=12,50 ¢=72, 50 %vz =72 - x%

A particle is moving along the x-axis such that its acceleration is of magnitude 2xm s72for 0 € x < k. The particle
passes through the point O when x = 0m, and at this point v = 12ms~!. Given that the acceleration is directed

State the differential equation and separate the
variables.

Integrate both sides and use the values to find v = f(x).

Find the velocity at the required point.
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b Velocity function fails to work when 2 < 0. Note the condition for the function to work.

Hence, the limit of the velocity function working  Determine £.
is when 144 = 2x? = x = v'72; hence, k = V72.

Suppose we apply a force of magnitude sin x to a particle of mass 3kg, where x is
displacement and the force is valid for 0 € x € x.

If the particle passes through the point O with velocity 2ms™!, and the force applied is in the
direction of motion, we should be able to determine the velocity when the displacement is g m.

We start with F = ma, then sinx = 3v ?
X

So J3vdv = Jsinxdx, which means %vz = —COSX +c.

Next, with x =0, v=2, we get ¢=7. Then %vz =7 —cosx.

When x =2 we see that §v2=7, or v= Ems*l.
2 2 3

WORKED EXAMPLE 17.8

A toy car, of mass 0.5kg, is travelling in a straight line and passes through the point O with velocity 8ms™!. Then

N acts on the car, where x is measured from the point . Find:

an opposing force of magnitude -
X

a the velocity of the particle as a function of x

b the exact distance travelled when the velocity is 6ms™".

Answer

=0.5v—. Form the differential equation. Note the opposing
x4+ 1 dx . : ;
force is negative.

a From F=ma, -

Then JVdv:-—SJ L dx.
x+1

So %v:’: 8lnjx+ 1] +c.

When v=8, x=0=¢c=32

So v=v64 — 161n|x + 1| ms™". Integrate both sides and use the given values to find
v = f(x).
b Let 6=+64— 16In|x + 1|. Substitute in v = 6 and solve for x.

Then 36 =64 — 16In|x + 1|,

L )
4

1
Hence, x=¢ — lm.
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® © O O
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=

2

10

In each of the following cases, integrate the acceleration expression using a = ? to obtain an expression
for v. *

. 1
a a=x*+3 b a=e¥—x c a=3-—
2

A particle of mass 2kg is resting on a smooth horizontal surface. A force of magnitude 4xN is applied to the
particle. Find the speed of the particle after it has travelled 6m.

A particle is travelling in a straight line such that its acceleration is 3x m s72. Find v = f(x), given that when

y=>5ms 2 x=0m.

A force of magnitude *
X+

N is used to drive a car of mass 1200kg. The car starts from rest. Find the

velocity of the car when x = 6m.

A particle moves along the x-axis with acceleration 3¢ 2ms? directed towards the origin, O. Given that
P passes through O with speed Sms~!, find an expression for the velocity in terms of x and, hence, find the
terminal speed of the particle.

A particle of mass 0.25kg is travelling in a straight line at 6ms~! when it passes through a point, O. An
X

x*+1

opposing force of magnitude N is then applied to the particle. Find the speed of the particle when

x=10m.

A particle is travelling in a straight line with acceleration (3 + 2x) ms~2. As it passes through a point, O, its
velocity is 2ms~!. Find »? in terms of x.
A particle has velocity v = kxsin x m s~! where x is the distance from the point O. The particle travels in
a straight line. Given that the particle has velocity v =2 ms~! when x= 3—nm, find the acceleration of the
. S 2
particle when x = Tm.

A particle is travelling along a straight line with acceleration 4 cos ﬁ ms~2. As it passes through the point

where x =0m its velocity is v=7ms™".

a Find an expression for the velocity in terms of the displacement xm.
b Write down the exact value of the minimum velocity of the particle.

A particle of mass 2kg experiences a force of magnitude (3x - 12) N being applied in the same direction as
X

the particle’s motion. When x=1m,v=4ms™". Find v = f(x).
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(E0 WORKED PAST PAPER QUESTION

A particle P of mass 0.5kg moves on a horizontal surface along the straight line OA, in the direction from O to A.
The coefficient of friction between P and the surface is 0.08. Air resistance of magnitude 0.2v N opposes the motion,
where vms~! is the speed of P at time ¢s. The particle passes through O with speed 4ms™' when = 0.

i Show that 2.5 % = —(v+2) and hence find the value of t when v = 0.
ii  Show that % =6e %% - 2, where x m is the displacement of P from O at time ¢s, and hence find the

distance OP when v = (.
Cambridge International AS & A Level Mathematics 9709 Paper 5 Q7 June 2008

Answer
| Start witls = fhen <~ D2p=08 %
Since —Fp=0.08 x0.5¢, —04-0.2v=0.5 %

Multiplying by 5 gives 2.5 % =—(v+2).

Separating the variables gives J _51_ 3 dv= —J0.4dz, which leads to In(v + 2) = —0.4¢ + ¢.
v

When 1=0,v=4andso ¢= In6.So In(v+ 2) = —0.4¢ + In6.

2h

When t=0,In2 - In6=-0.4 hence, r = > 13 =2758

ii Starting from In(v+2)— In6 = 4).4:,‘”6”—2 = ¢4 then v =604 _2,

Since v = d_)‘ dx _ 604 _ o
de dt
%In3 "
‘ i 2ln
Integrating, x = J (6674 — 2)d¢, which leads to x = [~15e7%% _ 2 f]é .
0

So the distance is 4.51 m.
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Checklist of learning and understanding

Terminology:
® Velocity is the rate of change of displacement with respect to time.

@ Acceleration is the rate of change of velocity with respect to time.

Notation:
d2x M - : ;

® = ? the second derivative of displacement with respect to time.
dr

_dv

=7 the derivative of velocity with respect to time.
t

a

dr . dvi . — .
a=v . derived from T is the acceleration in terms of displacement.
X ;2

= % the first derivative of displacement.
t

x= Jvdt
y= jadt‘
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END-OF-CHAPTER REVIEW EXERCISE 17

@ 1 A particle P starts from rest at a point O and travels in a straight line. The acceleration of P is (15 - 6x) ms™2,
where xm is the displacement of P from O.

i Find the value of x for which P reaches its maximum velocity, and calculate this maximum velocity.,
i Calculate the acceleration of P when it is at instantaneous rest and x > 0.

Cambridge International AS & A Level Mathematics 9709 Paper 51 Q4 June 2011

@ 2 Acyclist and his bicycle have a total mass of 81 kg. The cyclist starts from rest and rides in a straight line. The
cyclist exerts a constant force of 135N and the motion is opposed by a resistance of magnitude 9v N, where
vms~! is the cyclist’s speed at time ¢s after starting,

9 dv_ 1

15— vde

i Solve this differential equation to show that v = 15(1 - e—az).

i  Show that

iii  Find the distance travelled by the cyclist in the first 9s of the motion.
Cambridge International AS & A Level Mathematics 9709 Paper 51 Q6 November 2010

@ 3 Anparticle P of mass 0.25kg moves in a straight line on a smooth horizontal surface, P starts at the point O
with speed 10ms™' and moves towards a fixed point 4 on the line.

At time s the displacement of P from O is xm and the velocity of Pis vms~'. A resistive force of magnitude
(5 = x)N acts on P in the direction towards O.

i Form a differential equation in v and x. By solving this differential equation, show that v = 10 — 2x.

i Find x in terms of 7, and hence show that the particle is always less than Sm from O.

Cambridge International AS & A Level Mathematics 9709 Paper 51 Q7 June 2010
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Momentum

In this chapter you will learn how to:

m recall and use the definition of the impulse of a constant force, and relate the impulse acting on a
particle to the change in its momentum

m recall Newton’s experimental law, also known as the law of restitution, and the definition of the
coefficient of restitution

m understand and make use of the terms elastic and inelastic

m use Newton’s experimental law to solve problems involving the direct and oblique impact of a
smooth sphere with a smooth surface.




Chapter 18: Momentum

PREREQUISITE KNOWLEDGE

Where it comes from | What you should be able to do | Check your skills

AS & A Level Mathematics = Write velocity in 1 A particle is moving in a straight line with

Mechanics, Chapter 3 | component form., velocity 12ms™! such that the angle its path

Pute Mathematics2:& 3, | m.akes with the x-axis is 30 anthocl-cw1se.
Find the components of the velocity in the

Chapter 9

x and y directions.

AS & A Level Mathematics | Find the kinetic energy of 2 A particle of mass 2kg is travelling with speed

Mechanics, Chapter 8 an object that is in motion. 4ms~!. Later in the motion it is travelling
| with speed 11 ms™!. Find the change in kinetic
| energy.

What is momentum?

Any object that has mass and is in motion has momentum. If two objects are moving at the
same velocity, the heavier object will have greater momentum.

In this chapter, we shall work with the quantities momentum and impulse, understand
how the formulae are derived, and understand the units used for these quantities. We shall
also look at collisions between bodies, especially elastic and inelastic collisions where
momentum is always conserved, using the symbols defined in Key point 18.1.

.1

In this chapter, we shall use the symbols » for mass, u for velocity before the collision, v for velocity

after the collision, P for momentum, e for coefficient of restitution. / for impulse and KE for kinetic
energy. Impulse will not be examined in this course.

Newton’s experimental law and the coefficient of restitution have many real-world
applications. There are strict performance rules for equipment used in sports, such as
golf and tennis. Manufacturers use Newton’s experimental law to ensure that their sports
equipment adheres to the required elastic properties and stays within the rules.

18.1 Impulse and the conservation of momentum

Consider an object of mass m, moving with velocity v. The momentum, P, of this object is
defined as being the product of its mass and velocity. Hence, P = mpv. This quantity is a
vector: it can be either positive or negative.

For an object to change its momentum, a force must be applied. If that force is applied over

time, then %(P) = %{mv), then (é—]; =m % +v %? If you assume that the mass does not
change over time, then oz =m @
dz dt

Changing an object’s momentum requires a force. We have seen how to use the equation
from Newton’s second law, F = ma.

Reversing this process by integrating should give a result that relates to momentum.
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t f
S0 J Fdr = [ madt. Noting that a = %, and that the velocities at the times given are u
0 0 t

v

i Tt t
and v, [ Fdt= J m @dr becomes j Fdr= J mdv.
0 o dr 0

u
9 Then Ft = mv — mu. This is clearly a change in momentum, which we call impulse.
Common practice is to let /= Ft so that /=m(v — u). The units of impulse are given in
Key point 18.2.

Impulse I is measured in newton seconds (Ns).

WORKED EXAMPLE 18.1

A particle of mass 4kg is travelling in a straight line on a smooth, horizontal surface. The particle is moving at
a constant velocity of 3ms™! when a force of magnitude 5N is applied for 0.4s. Find the impulse applied to the
particle and its velocity after 0.4s. The particle does not change direction during its motion.
Answer
=t e A simple clear diagram shows the before and after
: states of the particle.
-—SN——-)- 4kg : dkg
412 :

before after
Uge T=Fr, =5 % 04=2Ns. Use force and time to find the impulse.
Using I=m(v —u),2 =4(v—3). Apply impulse to the right.
Hence, v=3.5ms™!. Determine the final velocity.

WORKED EXAMPLE 18.2

A particle of mass 10kg travels in a straight line. When the particle is travelling with velocity 12ms™, a force of
magnitude 18 N is applied to the particle for 12s. Given that the particle’s direction is reversed, find the velocity of
the particle after 12s.

1

Answer
= . Note that the particle changes direction. This implies
that the momentum of the particle before the force
: 18N is applied and the momentum afterwards must be in
10kg : 10kg <« ; : ;
: different directions.
before - after

First take positive momentum to the left. Choose a sensible positive direction.




Using Ft=m(v—u),18 x 12 =10(v — (=12)). Use the impulse formula.

Then 18x 12

— 12 =v; hence, v=9.6ms"!. Determine the final velocity.
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WORKED EXAMPLE 18.3

A particle of mass Skg is travelling along a smooth, horizontal surface with velocity 15ms™!. Given that the force,
F, applied over 4s reduces the velocity by 8ms™, and that the particle still travels in the same direction, find the
force F.

Answer

—>15m/s e | Note that the velocity is reduced. so F is in the

: opposite direction to v.
Skeg -, 3 S5kg -(—F—
before ’ after

Use Ft =m(v—u) to the right. Take positive momentum to the right.

—4F =5(v - 15) State the value of .

Since v="7, then 4F =40.

Hence, F=10N. Determine F.

When two particles collide, whether they remain separate after impact or combine to make a
single object, the law of conservation of momentum states that mu; + mouy = myvy + myvs, as
shown in Key point 18.3. m,, m, are the masses of the particles; u;, u, are the velocities before
the collision, and v, v, are the velocities after the collision.

KEY POINT 18.3

The law of conservation of momentum:

My + Ml = vy + BV

Consider a particle, P, of mass 2kg travelling on a smooth, horizontal surface with velocity
5ms~!. This particle collides with a second particle, O, of mass 1kg, which is at rest. The
particles stick together when they collide. The particles are said to coalesce.

If we draw a diagram to explain what happens, then we can attempt to find the velocity of
the particle afterwards.
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So using conservation of momentum in the direction of motion, 2x 5+ 0= (2 + D).

Hence the velocity of the combined particles afterwards is v = %m g,

This method comes from the equation miuy + myuy = 11V + MaV,, as shown in
Key point 18.3. Here, each particle has its own momentum and, since momentum is
conserved, both sides must balance.

In this simple case, the particles coalesce and the right side becomes:

myy + myy = (my + mo)y

@ KEY POINT 18.4

When two particles collide, the amount of kinetic energy (KE) lost can be found by comparing the
KE before and after the collision. If the collision is perfectly elastic, we can use conservation of
energy to equate KE before and after the collision.

When two particles collide and coalesce, or stick together, they are said to be inelastic.
That means there is no bounce between them. If two particles collide and there is no loss
in kinetic energy, the collision is said to be perfectly elastic. We can use conservation of
energy, as shown in Key point 18.4.

Consider the example of two particles that are both of mass m. They are travelling with
velocities 2u and u, as shown. To find a relationship for the velocities after a perfectly
elastic collision, we must first find the kinetic energy before they collide.

414
—>» 2  —>u —>y —>
ST s : Pra c;-?;y:-‘,,_
B | 1. ni s |
before after

KB = %m(flu)2 + %muz = %muz, and KE,per = %m(u? +13).

Using conservation of energy means 5u* = v{ + v is the equation we need to solve. There

are many solutions to this, so we shall not be able to solve this at present.

To help us deal with this, we are going to use Newton’s experimental law, which is also
known as Newton’s law of restitution.
speed of separation

This law states that the constant e = ,where 0 < e < 1. eiscalled the
speed of approach

coefficient of restitution. When e =0 the objects colliding have no elasticity. This means
that they will coalesce.

When e = 1, the objects are said to be perfectly elastic, as in this example.

To determine v and v,, let e = 27" 1n this expression, v, — v; shows how quickly the

u—u

second particle escapes the first one and 2w — u shows how quickly the particles approach
each other.

So 1="2"" which means v, — v; = u. Then from the law of conservation of momentum

we have 2mu + mu = mv, 4+ mvs, or 3u = v; + v;. Combining these two equations gives
vi =u and v, =2u.
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WORKED EXAMPLE 18.4

Two particles, P and @, are travelling on a smooth, horizontal plane. P has mass 3kg and Q has mass 1 kg. P has
velocity 3u and Q velocity u. P then collides with Q, such that the collision is perfectly elastic. Find the velocity of
each particle after the collision. Confirm that the kinetic energy is the same before and after the collision.

Answer
—>»3u —>u —> —>
T e N \ & ,
Lz Tkg 3kg lkg
before . after
Using conservation of momentum: %u + u = 3v; + vy --=-memmaeev (1 Use conservation of momentum.

27V g vy — vy =2u. (2) Use Newton’s experimental law (NEL)

Using Newton's experimental law: 1 =

=i with e = | as we have a perfectly elastic
collision.
Combining (1) and (2) gives v; = 2ums~", v, = dums~! Solve the simultaneous equations.
Before: KE = -ZL X3 x 9+ % x 1 xu?=142] Find the KE before the collision.
After: KE = 5 X 3% du? + ! X 1x 1602 = 1427 Confirm that the KE after the collision is
2 2 the same.

When collisions are neither inelastic nor perfectly elastic, we have a coefficient of
restitution that reduces the energy of the system. In most cases 0 <e < 1.

EXPLORE 18.1

Table tennis balls are made to have the value e = 0.95. Carry out some online
research into different types of sporting equipment, such as footballs and tennis
balls, and find out their coefficients of restitution.

WORKED EXAMPLE 18.5

Two smooth spheres of equal radius are resting on a smooth surface. Sphere 4 has mass 2m and sphere B has mass

3m. The coefficient of restitution between the spheres is 2 Sphere A4 is projected towards B with velocity 2u and
sphere B is projected towards 4 with velocity u. Find the velocity of each sphere after the collision.

Find also the loss in kinetic energy.

Answer
Pl wmE— ey It is best to make no assumptions
7',,;11‘13 A ‘5}} about the directions of particles after a
SHI . : L v . .
3 y 19 collision. The solutions will tell you what

: 1s happening.
before after
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Conservation of momentum: 4mu — 3mu = 2mv, + 3my,, so
2vy 4 3v, = u.

. 2 vy—v
Newton's experimental law: = = 2 log
3 2u+tu
Combining gives v; = —ums™, v, =ums™.

(%]
pus
(%]

) —31’] = 6u.

Before: KE = % X 2m X 4u? + % X 3mx ut = %mu?

After: KE = % X 2m X u + %X Im X ut = %muz

Hence, the energy loss is 3mu?J.

Use conservation of momentum and law
of restitution equations.

Since v; < 0, 4 changes direction. B also
changes direction.

Find the energy before and after the
collision to determine the loss in kinetic
energy.

WORKED EXAMPLE 18.6

condition on e such that P’s direction is changed.

Answer
—>u —>0 —> —>
i 2m m 2in
P Q E 0
before . after

_ TTIEE

Newton's experimental law: e = %, SO ¥y — V) = eu.
R . i H

Combining gives v; = g(l +e),and so v = 3 (I —2e).

Consider v, <0,andso 1 —=2e<0= e>%.

Conservation of momentum: mu = mv; + 2mv,, 0 vy + 2v, = u.

Two smooth spheres of equal radius are resting on a smooth surface. Sphere P has mass m and sphere ( has mass
2m. The coefficient of restitution between the spheres is e. Sphere P is projected towards Q with velocity u. Find a

Write down the two standard equations.

Equate to get v; and v, in terms of ¢.

Note P’s change in direction.

v; < 0 leads to the result.

DID YOU KNOW?

Newton’s cradle.

Newton’s cradle was first demonstrated by a French physicist known as Abbe Mariotte
in the 17th century. An English actor saw a toy version in 1967 and gave it the name
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@ 1 Two particles, P and Q, are resting on a smooth, horizontal surface. P is projected towards Q with velocity 2u
and they collide directly. Given that the masses of P and Q are 2m and m, respectively, and that the collision is
perfectly elastic, find the velocity of P and Q afterwards.

@ 2 Two particles, P and Q, are resting on a smooth surface. They are connected by a light string of length 4m.
The particles are of mass 2m and 3m, respectively, and are resting 2m apart. Q is projected directly away from P
with velocity u. Given that the string is inextensible, find the velocity of the particles when the string becomes taut.

0 3 Two identical, 1 kg, smooth spheres, 4 and B, of equal radius, are travelling on a smooth surface. The velocity
of 41s 3ms~! and the velocity of Bis 2ms™!. Given that the spheres are moving in opposite directions, and
that the coefficient of restitution is 0.7, find the loss in kinetic energy due to the collision.

@ 4 A particle, P, of mass 4m, is projected with velocity 2u towards another particle, Q, of mass 5m, which is at
rest. Both particles are on a smooth, horizontal surface. The coefficient of restitution between the particles
is e. Find the condition on ¢ so that both particles are travelling in the same direction after the collision.

@ 5 Two particles, P and Q, are resting on a smooth, horizontal surface. Their masses are 2kg and 3kg,
respectively. Particle P is projected towards Q with velocity Sms™!. It subsequently strikes Q and Q moves off
with velocity 2.5ms™!. Find the value of e, and also find the loss in kinetic energy due to the collision.

@ 6 Two particles, P and Q, are resting on a smooth, horizontal surface. P has mass 2m and ( has mass m.
Pis projected towards Q with velocity « and Q is projected towards P with velocity 3u. Given that O has

velocity gu, and has its direction changed due to the collision, find the value of e.

o @ 7 Two smooth spheres of equal size are resting on a smooth, horizontal surface. Particle P, of mass m, is
projected towards particle O, of mass 2m, with velocity 3u. Particle Q is initially at rest. The coefficient of
restitution between the spheres is e.

a Show that particle P has its direction changed provided e > %

b Given that the kinetic energy after the collision is half the initial kinetic energy, find the value of e and

state the velocity of P.

18.2 Oblique collisions and other examples

Consider a particle travelling towards a wall with velocity u at an angle of 6. If we split
the velocity into component form we have u, parallel to the wall, and u, perpendicular to
the wall.

When the particle bounces off the wall, the component u, is unaffected by the collision, but
the component u, will be subject to the conservation of momentum.

After bouncing off the wall, the component u, will become eu,. Note that the angles a and
# are not the same, unlesse = 1.

When an object collides with a wall at an angle other than 90°, this is known as an oblique
collision,
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As an example, consider a particle travelling with velocity 2u, directed at an angle of 30° to
a wall, with coefficient of restitution % between the particle and the wall. Find the velocity

of the particle after the collision.

We have u, = 2u cos30 = uV3, and u, = 2usin30 = u.

The particle bounces off the wall so eu, = g. Then for the velocity afterwards, we have

)
(wV3) + (E) , which is u\;ﬁ?’m s~!. We can also find the angle that the particle makes

2
44
. ; Clly 2 ; s
with the wall afterwards, using tana = — = ———, which gives a = 16.1°
U
Y w3

WORKED EXAMPLE 18.7

A particle is projected along a smooth, horizontal surface with velocity u. The particle collides with a smooth,
vertical wall at an angle of 60°. Given that the coefficient of restitution between the particle and the wallis 0.3,
find the angle between the wall and the path of the particle after the collision.

Answer

418

First: u, = ucos 60 = Split the velocity into its components.

(Lol

Then u, = usin60 = %

: 3 w3 3v3u Find the component that is perpendicular to the wall
Then after bouncing, ey, = — X ——= . i
10 2 20 after colliding.

Then tana = 3

V3 p 2 Use components to find the tangent of the angle.
x

ol L Determine a.
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WORKED EXAMPLE 18.8

A particle of mass 3kg is travelling on a smooth, horizontal surface with velocity 4ms~!. The particle collides

obliquely with a smooth, vertical wall where the coefficient of restitution is % Given that the angle between the

path of the particle and the wall before the collision is 40°, find the loss in kinetic energy due to the collision.

Answer

e,
S
: HETNE
before after
Parallel to wall: u, = 4cos40 = 3.0642 Find both components before the collision.

Perpendicular to wall: u, = 4sin40 = 2.5712

After collision, eu, = 0.8571. Find the perpendicular component after the collision.

Before: KE = % X 3x4:=724 Determine the KE before and after the collision.

After: KE = % X 3 x (3.0642% + 0.8571%) = 15.186

Hence, the energy loss is 8.817J. Determine the difference in kinetic energy.

WORKED EXAMPLE 18.9

When a smooth sphere travelling on smooth horizontal ground collides obliquely with a smooth vertical wall, it
rebounds off the wall at right angles to its original direction. If the sphere is travelling with velocity u and its path
makes an angle of 60° with the wall before the collision, find e, the coefficient of restitution.

Answer
Draw a clear diagram showing the situation before and
after the collision.

30°

before after
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Parallel: u, = ucos60 = = Find the velocity components before the collision.

This is unchanged after the collision.

Perpendicular: u, = usin 60 = ?u State the perpendicular component.

. - 3
After the collision, e, = —ecu.

Use the tangent of the angle to relate the components.

. . 2
Since the angle after is 30°, tan 30 = 23 eux .

So 1 _ V3e= e = Determine e.

V3

L) | =

Particles can also rebound off walls at 90°.

Consider two particles, 4 and B, of masses m and 2m. They are resting on a smooth
horizontal surface. Particle 4 is projected towards B with velocity u. 4 strikes B and then
B will go on to strike a smooth vertical wall, rebounding off at 90°. If the coefficient of

restitution between the particles is e and the coefficient of restitution between B and the

.1 G 3
wall is 7 can we show that there are no further collisions?

To start with, we need to draw two diagrams: one for the 4-B collision, and one for B and
the wall.

—_—y —»0 ) —_ —>
e 2m 74 2m
A B 1 B
before after

First we use conservation of momentum: mu = mv; + 2mv, to get u=v; + 2v,.

Vo —

s : 7 v
Then use Newton’s experimental law: — = -2—1L or v, —v; =—u
g =g

Adding these two gives v; = % u and v = ui u. So we know that A travels in the opposite

direction away from the wall.

B hits the wall and bounces off with velocity % X %M = 25—4 u. Itis now travelling in the same
direction as 4.

5

—_— gtr : geu ——
2m 2m
B ; B
before after

Since iu > %u, B will never catch up with 4, and so there will be no more collisions.
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WORKED EXAMPLE 18.10

Two smooth spheres, P and Q, of masses 2m and 3m, respectively, are resting on a smooth, horizontal surface.
Sphere P is projected towards Q with velocity 2u. P strikes Q and Q begins to travel towards a smooth, vertical
wall. The coefficient of restitution between the spheres is e. Q strikes the wall at right angles and rebounds off the

wall, where the coefficient of restitution between Q and the wall is g Given that P’s direction is reversed, and that
Q strikes P again, find the range of values of e.

Answer
—»2u —>»0 ) —> —_—y,
2 Jm 2m 3in
£ Q : P 0
before ' after
Conservation of momentum: 4mu = 2mv| + 3mv,, so 2v| + 3v, = 4u. Write down the two standard
. - equations.
Newton's experimental law: e = 122_1). SO 2wy — 2v; = 4eu. 4
u
Adding gives 5v, =4u + deu, or v, = %u(l +e). Equate them to find both velocities in
terms of e.
Hence, v, = %M(Z - 3e). vy result to be used later.
—>§u(1+e) Tl(—)u(1+e)<——-
3m Im
0 : g
before after
Since ey = %, Q bounces off with velocity %u(l + e). Allow QO to bounce off the wall.

State how P changing direction

For P tochange direction 2 —3e <0, s0 ¢ > %
3 affects the value of e.

Assume P is moving to the left, and

For Q to strike P again, L.1,.'(1 +e)> gu(3.e -2).
g 10 5 allow Q to travel faster than P.
This gives e < T

Hence, % & B % State the final range of values.

Let us now look at multiple objects colliding. We shall consider three smooth spheres,

A, B and C, all of equal size, resting on a smooth, horizontal surface.

Let A have mass m, B have mass 2m and C have mass m. The coefficient of restitution
between 4 and B is % and the coefficient of restitution between B and C is Z So, assuming

A, Band C are collinear (arranged in a straight line), let us project 4 towards B with

velocity u.
—>y —>0 | —»y —
m 2m m 2n1
1 B A B

before - after
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Conservation of momentum: miu = mv, + 2mv;, 50 u = vy + 2v,.

%, which leads to v, —v| = %u.

Newton's experimental law: % =
. - 1 4
Equating gives v; = §u and v, = §u

Next, we observe B and C colliding.

—>d —>0 oy

by
o
o
2

before after

: & 8
So conservation of momentum: §mu = 2mvy + My, SO 2v3 4+ vy = 6”‘

Using Newton's experimental law: %: %, leadingto vq4 —v3 = %u.
—u
9
. . 16 40
Equating gi =— d vg=—u.
q g gives vy SIM and vy 81u
Also, according to the velocity of B, 4 will not collide with B again. There are no further

collisions.

We can then work out the loss in kinetic energy at this point. So, initially KE = %muz, then

1 1\ 1 e A .1 40 \* 731 You are unlikely to
finally we have KE = —m(—u) + =X 2m (——u) +—m (—u) = mu?. So the loss in encounter an example
22 2 \9 2 81 2 \81 4374 . ) )
4 with more than three
kinetic energy is 2187 il particles colliding.

WORKED EXAMPLE 18.11

Three particles, P, Q and R, are of masses 2kg, 3 kg and I kg, respectively. They are all at rest on a smooth,
horizontal surface. P is projected towards Q with velocity Sms™'. At the same time, Q is projected towards P with
velocity 1 ms~'. Given that P, Q and R are all in the same line, and that the coefficient of restitution between all
spheres is 0.6, find the speed of R after it is hit by Q.

Answer
—> 5 —»1 —> —>
. . Y P 0
2kg 3kg § 2kg 3kg
before . after
P—Q conservation of momentum: 2 X 5 — 3 x 1 =2v; + 3v,, Consider the collision of P and Q first. Make
so 2v;+ 3y, =7, sure you draw a diagram as the problems will

, ; 3 W= be easier to solve.
Newton's experimental law: ' 2"l and thus v, — v; = 3.6.
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Combining these two equations gives Solve to find the velocities after the first
Vo = 2.84 and V= -0.76 (T.O the left) COHiSiOD.
—>»284 —>0 @ —y, —>y,

5. W T .

3kg lkg = 3kg kg

before . after

O-R conservation of momentum: 3 x 2.84 = 3v; + v, Consider the Q and R collision. Create the
s0 3v; + vy =8.52. necessary equations.
Newton's experimental law: %: % giving vy — v; = 1.704. Combine to solve.
Then v3=1.704ms™' and v, =3.408ms. Calculate the velocity of R.

Finally, we look at oblique collisions between two spheres or particles. It is important
to note the line of centres between the two objects. When the two particles meet, we
consider the conservation of momentum in two directions: along the line of centres and
perpendicular to the line of centres. The general case is shown in the diagram.

Consider two spheres, 4 and B, of equal radii, on a smooth horizontal surface, and with
masses 2m and m, respectively. Initially, sphere B is at rest and sphere A4 is projected with
speed u towards B. When the spheres collide, the direction of 4 is at 45° to the line through

the centres of 4 and B. Given that the coefficient of restitution between the spheres is %,
find the speeds of the particles after colliding.

before : after

Begin by considering the components of the speed of 4. We notice that the only component
affecting the collision is u,. Note that u, = ucos45, u, = usin45.

Using conservation of momentum, we find the vertical components will cancel to give:
2mucos4s = 2mvy, + mv,, which we write as uV2 = 2y, + v,.

Using Newton’s experimental law: 1 =R""
2 ucos45

Combining these leads to v, = zﬁ and v, = uzﬁ So the speed of sphere B after the

; ; 2
which can be written as MT =v;— 1.

b . u\/i = |
collision is Tms ;
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2
For sphere A the final speed is given by Vil + vi = (&) + (E@

2
. Hence, the
2 4

. H\/g e
speed is ——ms™".
2v2

We can also determine the angle of deflection caused by the collision. This is the angle that
shows the change in direction travelled before and after the collision. The direction relative

. . i ; u ;
to the line through the centres is 45°, then after the collision the angle is tan~! Vty . This
1

gives an angle of tan™! 2 = 63.4°. So the angle of deflection is 63.4° — 45° = 18.4°,

WORKED EXAMPLE 18.12

Two smooth spheres of equal radii, P and Q, are at rest on a smooth horizontal surface. The coefficient of
restitution between them is —. Sphere P has mass m and sphere Q has mass 3m. Sphere P is given an initial speed of
4y and is projected in a direction such that it will collide with Q. Given that the angle between the direction of P
and the line through the centres of P and Q at the point of impact is 60°, find the angle of deflection for P.
Uy 4y —>0 —
P a i, & P vy .
mkg Imkg mkg 3mkeg
424 Answer
For P: u, = 4ucos 60 =24, Uy = 4usin 60 = 2\/§'L£ Work out the two components for P.
Then, along the line PQ: Along the line of centres we consider conservation of
conservation of momentum: 4ucos60 = mvy + 3mvs,  momentum and Newton’s experimental law.
or 2u=v+ 3v,.
- i L sy i
Newton's experimental law: — = '2 ,0F ¥y — V) = 5
u
Adding these two gives u _ 4vy, and 50 vy = 5 0. Combine the equations to find the speeds of both
2 8 spheres.
1
Hence, v, =-u.
8
Before the collision, the angle between P’s Note the angle before the collision.
direction and the line through the centres 1s 60°.
U, 3 ativr 7 ~ cmQ
i St a ) _ tan-1(16+3), which Determine ﬂlle' angle of P relative to the line of centres
. = after the collision.
i 87.97.
Hence, the angle of deflection 1s 27.9°. State the angle of deflection.
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A small smooth ball of mass m is travelling on a smooth horizontal floor with speed u. The ball then goes on
to strike a fixed smooth vertical wall at an angle @ = 30° to the wall. The coefficient of restitution between the
ball and the wall is 0.5. Find the speed of the ball after bouncing off the wall.

A small smooth ball of mass 3m is travelling on a smooth horizontal floor with speed 2u. The ball then goes
on to strike a fixed smooth vertical wall at an angle @ = 60° to the wall. The coeflficient of restitution between
the ball and the wall is 0.25. Find the loss in kinetic energy due to the collision with the wall.

Three rail carriages are on a smooth, horizontal rail track. They are equally spaced apart. The carriages

are labelled 4, B and C, and their masses are 2m, 6m and 3m, respectively. Carriage 4 is projected towards
carriage B with speed u, where B is in between 4 and C. Given that the coefficient of restitution between each
carriage is 0, find the velocity of the carriages after B collides with C.

A particle is travelling on a smooth, horizontal surface with velocity 3u. The particle collides with a smooth,
vertical wall at an oblique angle of 30° to the wall. Find the angle between the path of the particle and the wall
after the collision, given that e = é

Two smooth, identical spheres, P and Q, are resting on a smooth, horizontal surface. The masses of the
spheres are 3m and m, respectively. P is projected towards Q with velocity u.

a Given that the coefficient of restitution between P and @ is e, show that, no matter the value of e, P will
travel in the same direction as O after the collision.

b Given that e = % find the loss in kinetic energy due to the collision.

Three particles are lying in a straight line on a smooth, horizontal surface. The particles are labelled
A, Band C, with B between 4 and C. The masses of the particles are 5kg, 3kg and 2 kg, respectively. The

coefficient of restitution between 4 and B is é, and the collision between B and C is perfectly elastic. Particle

C is projected towards particle B with velocity 8ms™'. Find the velocity of each particle after the second
collision, stating whether or not there will be any further collisions.

The diagram shows a smooth sphere, travelling horizontally, that is colliding with two smooth vertical walls
at a corner point. The sphere has an initial velocity u, and given that the coefficient of restitution between the
sphere and wall is e, find a relationship between the initial velocity and the final velocity after two collisions.




Cambridge International AS & A Level Further Mathematics: Further Mechanics

@ 8 Particles P and Q are resting on a smooth, horizontal surface. A smooth, vertical wall is at a distance 2r
from Q, and the wall is perpendicular to the line through P and Q. The masses of P and Q are 2m and m,

respectively. The coefficient of restitution between P and Q is %, and the coefficient of restitution between Q
and the wall is % P is projected towards Q with velocity u. Find the distance of the particles from the wall

when they collide for a second time.

@ 9 Three identical smooth spheres, 4, B and C, of masses 2m, M and m, respectively, are resting on a smooth,
horizontal surface. The coefficient of restitution between 4 and B is % and the coefficient of restitution
between B and C is % Sphere A is projected towards B with velocity 2u. Given that 4, B and C are collinear,
and that the velocity of B is zero after it collides with C, find the loss in kinetic energy after the second

collision.

@ 10 Two spheres, P and Q, which are of equal radii, are placed on a smooth, horizontal surface. Their masses
are m and 2m, respectively. Initially, sphere Q is at rest and sphere P is projected with speed u towards Q.
When the spheres collide, the direction of P is 30° to the line through the centres of P and Q. Given that the

coefficient of restitution between the spheres is %, find the loss in kinetic energy due to the collision.

426
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@ WORKED PAST PAPER QUESTION

Two smooth spheres 4 and B, of equal radii, have masses 0.1 kg and mkg respectively. They are moving towards
each other in a straight line on a smooth horizontal table and collide directly. Immediately before the collision the
speed of 4is Sms™! and the speed of Bis 2ms~".

i Assume that in the collision 4 does not change direction. The speeds of 4 and B after the collision are
vy4ms~! and vyms~! respectively. Express m in terms of v, and v, and hence show that m < 0.25.

Cambridge International AS & A Level Further Mathematics 9231 Paper 2 04 November 2008

Answer

> vy > vg

m kg-

before after

0.5—-0.1vy

i Conservation of momentum: 0.1 X 5 —m x 2 = 0.1v, + mvg, then m = 2
+ v

Since v4>0 and vp>0,0.5-0.1v;,<0.5 and 2 +vz>2.So m <0.25.
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Checklist of learning and understanding

Momentum and impulse:

® Momentum is the product of mass and velocity such that P = mv.

The rate of change of momentum 1s a force such that F= i—P
t

Impulse is given as = m(v — u), measured in newton seconds, Ns.

Impulse 1s a force applied over time, so [ = Ff, or Fi =mv — mu.

Collisions:
For the conservation of momentum, »1ju; + maly = 01y + Ma¥s.
For particles that coalesce (e = 0), n1uy + maity = (1) + i)y,

For perfectly elastic collisions, e = 1.

, ) speed of separation X
Newton’s experimental law states that e = —————————, where e is known as the
speed of approach

coefficient of restitution and can take values0 € e € 1.

When two objects collide directly, conservation of momentum is considered along the line
through their centres.

When an object collides obliquely with a wall, only the component of the velocity that is
perpendicular to the wall is considered for conservation of momentum.
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END-OF-CHAPTER REVIEW EXERCISE 18

@ 1 Two smooth spheres 4 and B, of equal radius, are moving in the same direction in the same straight line on a

smooth horizontal table. Sphere 4 has mass m and speed « and sphere B has mass am and speed iu.

The spheres collide and A4 is brought to rest by the collision. Find the coefficient of restitution in terms of a.

Deduce that a > 2.
Cambridge International AS & A Level Further Mathematics 9231 Paper 2 Q3 November 2010

@ 2 3m i
A@® [ ¥

— i —>

Two perfectly elastic small smooth spheres 4 and B have masses 3m and m respectively. They lie at rest on
a smooth horizontal plane with B at a distance a from a smooth vertical barrier. The line of centres of the
spheres is perpendicular to the barrier, and B is between A and the barrier (see diagram). Sphere 4 is projected
towards sphere B with speed u and, after the collision between the spheres, B hits the barrier. The coefficient of

restitution between B and the barrier is % Find the speeds of 4 and B immediately after they first collide, and
the distance from the barrier of the point where they collide for the second time.

Cambridge International AS & A Level Further Mathematics 9231 Paper 21 Q3 June 2010

@ 3 Three small spheres, 4, Band C, of masses m, km and 6m respectively, have the same radius. They are at rest on
a smooth horizontal surface, in a straight line with B between A4 and C. The coefficient of restitution between A

and B is A and the coefficient of restitution between B and C is e. Sphere 4 is projected towards B with speed

and is brought to rest by the subsequent collision.
Show that & =2.
Given that there are no further collisions after B has collided with C, show that e < %

Cambridge International AS & A Level Further Mathematics 9231 Paper 23 Q1 June 2011
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1 Alight, elastic string, of natural length 2m and modulus of elasticity 40N, has one end attached to a ceiling at
the point O. A particle of mass 0.5kg is attached to the other end of the string, and the system is allowed to rest
in equilibrivm with the string taut.

a Find the extension in the string.
The particle is then pulled down a further 0.75m and released.
b Find the shortest distance between the particle and O in the subsequent motion.

¢ Show that while the string is taut the particle performs simple harmonic motion.

2 The diagram shows a lamina that consists of a uniform semicircular plate of radius a A
attached to a uniform rectangular plate of dimensions a and 2a.

The density of the rectangular section is twice the density of the semicircular section. By

a Find the centre of mass of the combined lamina from the edges A8 and BC.

b The lamina is suspended from the point 4 and allowed to hang in equilibrium.
Find the angle between 4B and the vertjcal. c B

3 A particle of mass m is dropped from a great height. The air resistance on the particle
is given as mkv N,

a Show that 2] =g—kv.
430 de

b Hence, show that v= %(1 — ko),
¢ State the speed of the particle after a very long time.

4 A smooth hemisphere, of radius 24, is placed with its plane face on a horizontal surface. A particle, of mass 3m,
is placed on the highest point of the hemisphere. The particle is then projected horizontally with speed 4 / %ga.

a Find the height of the particle above the horizontal surface when it leaves the surface of the hemisphere.

b Find the speed of the particle when it strikes the horizontal surface.

5 A particle is projected from the top of a cliff that is 25m above the sea below. The speed of the projection is
40ms~! and the angle of elevation is 15°. The particle travels as a projectile and lands in the sea.

a Find the horizontal distance the particle travels before landing in the sea.
b Find the duration of time for which the particle is 30 m above the sea below.
¢ Find the direction of the particle just before it hits the water.

6  Two particles, P and Q, of masses 2m and 3m, respectively, are resting on a smooth, horizontal surface. Particle P
is projected towards Q with speed u. It strikes Q directly and the coefficient of restitution between the particles
1s e.

a Find the velocity of P and Q after the collision, in terms of e and u.
b Find the range of values of e such that P’s direction does not change due to the collision.

¢ Find the loss in kinetic energy due to the collision, giving your answer in terms of e, m and u.
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FURTHER MECHANICS PRACTICE EXAM-STYLE PAPER

1

A particle is projected from a point O, which is on horizontal ground: the speed of projection is 20ms~! and
the angle of elevation is 30°,

Find the speed and direction of the particle when it has travelled a horizontal distance of 30m. [5]
A uniform, solid cylinder of radius 2« and length 7¢ has density p. The cylinder is attached to a hemisphere

of radius 2a and density 2p. The plane face of the cylinder coincides with the plane face of the hemisphere.

This composite body is then suspended, in equilibrium, by a light string; this string is attached to a point
on the rim of the plane face of the hemisphere. Find the angle which the plane face of the hemisphere makes
with the vertical. 7

A particle is travelling along a smooth, horizontal surface with speed 3ums~. It has mass 2m and passes
through the point O when #=0. An opposing force with magnitude 8/% N is applied to the particle once it
passes over the point (.

a Find the velocity as a function of time, [5]

b Find the time taken for the particle to pass through the point O again. [4]

A particle, of mass m, is resting in equilibrium on the inside surface of a smooth, circular hoop of radius = a.

The hoop lies in a vertical plane. The particle is then projected with horizontal speed u from the lowest
point on the inside of the hoop.

a Show that, for complete circles, u > % ga. [6]

b Hence, find the range of values of u for which the particle does not remain in contact with the inner
surface of the hoop. [3]

A particle, of mass 2kg, is attached to one end of a light, elastic string of natural length 1.5m and modulus
of elasticity SON. The other end of the string is attached to a point on a ceiling. The particle is allowed to
rest in equilibrium with the string taut.

a The string is pulled down a distance of 0.1m to the point D and released. Show that, while the string
is taut, the particle performs simple harmonic motion, stating the value of w. [6]

Let the equilibrium position be denoted by the point E.
b Find the time taken for the particle to travel from the point D to 0.08 m above the point E. [3]

Two spheres, P and Q, of masses 2m and 5m, respectively, are resting on a smooth horizontal surface. Sphere
P is projected with horizontal speed 3u and it subsequently strikes Q directly. The coefficient of restitution

between the spheres is 0
a Find the speed of each particle after the collision. [6]
b Find the loss in kinetic energy due to the collision. 2]

¢ Find the magnitude of the impulse on P due to the collision. [3]




HD: H= 65, Hli,u #+ 65
Test statistic = —0.314
Critical value = 1595 ; = —1.895

There is insufficient evidence to suggest that the
sprinklers are not activated at 65°C.

Proof
0.614

[=pl ]

i [520.0,529.2] or 524.6 +4.6[1]
W Hopp~p, =0, Hy: pp — p, #0
o =071
Test statistic = 1.52
Critical value = 1.64

There is insufficient evidence to suggest a
difference between the two means.

P(X=x)=p(1 - p)*-!
b i Gyt)=p"e(1 - go)"

i B(Y)= g, Var(Y) = f‘zi
P

Hy: No association between test results and school
H;: An association between test results and
school

Test statistic = 3.68

Critical value = 3(0.95) = 5.99

Do not reject Hy: This is no association between
test results and school.

Hp: There is no difference between the population
medians

H;: There is a difference between the population
medians

R,, =48 or 88

W =48

Critical value = 49

Reject Hy: There is a difference in the
population medians, therefore there is a
difference in the average height of trees on the
two sides of the river.

a Proof

b Proof
c 1.74

Hy: The population median is 147.50

H,: The population median is greater than 147.50
P=49, N=6

T'=min(49,6)=6

Critical value = 10

Reject Hy: There is sufficient evidence to suggest
the median is greater than 147.50.

10 i 100 x4C,x 0.42 % 0.6 = 34.56
ii Hg: A binomial B(4, 0.6) is a good model.
H,: A binomial B(4, 0.6) is not a good model.
=922
23(0.95) = 7.815
Reject Hy: Probability of faulty chips is not 0.6.

11 Hy: Population median time taken = 140
H,: Population median time taken > 140

Test statistic: S* = 8(S~=2)
P(S* > 8) = 0.054688

Do not reject Hy: the time taken to fill
in the forms is 140 minutes.

13 Projectiles
Prerequisite knowledge

1 magnitude of deceleration = 0.36 ms~>
2 t=574sand v=37.4ms"!

Exercise 13A

1 a 45.62ms™!

b 8B8.68m
¢ 27.17° or 62.83°

2  42.75ms™!

14.59ms™ ! <u < 16.31ms!
36.9°

10v2 <u <20
.75ms™!

a V60ms!
6v15m

2.62s

b 2.75m

=T T N N R o)

10 a 2.32s b 25ms™!
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Exercise 13B
7.52m

20m
10.0m

39.9ms™!

30.9° below the horizontal
a 0.77s b
27.5m

18.1ms™

Proof
45°,71.6°
Proof

O 90 a9 & W R W =

10

End-of-chapter review exercise 13
ii 38.4m,17.8m

1 i Proof

ii

0 17.8m

2 4 y:)cﬂix2

10
ii x=423
iii #=28.8°

3 i k:%,Q,Proof ii ¢+=0.89%s

iii 16.3ms™!, 15.9 above the horizontal

Prerequisite knowledge
1  Parallel component is mgsin, perpendicular is
mgcost.

2 30°

Exercise 14A

1 1.05kg
2 0.333kg
s L0

3

6.3 N m anticlockwise
22.1 Nm anticlockwise
¢ 36Nm anticlockwise

5 a 46.5Nm clockwise
12.8 N'm anticlockwise
2.89 N'm anticlockwise
6 a 0.119m b 3.8kg
T m= iMf - E
19 19
8 a x=978N b x=402N

¢ x=320m
Exercise 14B
1 173 a from AB, 127 a from AC
58 58
2 5.71 from AB, 2.64 from AC
3 1.28r
4 G ﬂa, ga
81 81

§ x=304r,y=191r

7 x=273a,y=182a
8 Proof

Exercise 14C

1 234r
2 ér
6
3 ér
4
4 J?zua
8
5 e
28
§ Teslin
3
7 x=649r
100a — 9%«
40 + 6k




Answers

Exercise 14D 7 2v10ms"!
1 68.2 . . 2
2 29.70 4(”[2
1
3 uz—
8
2V3 o )%
4 320 3
5 55.8"
10 3v35 o V435
& u 5 5
7 0.474mg, at an angle of 82.7° clockwise from the Exercise 158
wall. 1 2.17ms™!
8  Topples first 2 295rads™!
11V3 1 3 1.96rads™!
9 a m b —r
g "¢ 2 4  27.65ms™!
) ) 5 T,p=372N, Tsp=444N
End-of-chapter review exercise 14 AP o
1 i 562.5N ii  52.1° with vertical 6 [3ga
2 i 212N ii x=0.313 4
= -
3 i 0.143m 7 a w=299%rads
ii a P=25 b 0.787 b 28.5 per minute
iii P=26.0, Proof 8 p=0305
9 a 4v2N b 6.51ms™!

15 Circular motion

Prerequisite knowledge Exercise 15C

1 Magnitude is 4.91 N, direction is 13.4° clockwise 1 48.2°

from the negative x-axis. 2 136.2°
2 0.832ms™2 3 44.0°
3  21.0ms™! 4 Tyin=4mg, Ty = 16mg
Exercise 15A S usViga

2 _ 2. 392

1 = ! b 2m 4ms 5 2=

a 3 rads ¢ 4m =T m

10
2 5N 7 33.6°

-1

3 3.23rads 8 a 15ga b v=+v3ga c R:%mg
4 »=+6rad s, 2.57s
. 1 9 a v= \/Ega b Riu= 3

HZ

> 10 a V7ga b 18mg

6 20ms!
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End-of-chapter review exercise 15 Exercise 16C
1 i Proof ii v=3566ms! 1 246]
2 i w=819rads™',KE=0.402] 2 1L15ms™!
ii T=671N,»=10.6rads™ 3 a 1.07m b 2.07m
. 1 o 4 832ms’!
3 i Ega ii Ega
5 a 153ms™ b 38.5) ¢ 3.90m
6 4.63ms’!
Prerequisite knowledge 7 a 1L13m b 4.19ms™
1 21.6m 5 9
8 EPE= nga], §mga]
2 12.2ms™!

9 \/Zg:ms‘l
Exercise 16A
1 a 045m b 75N ¢ IN

End-of-chapter review exercise 16
1 i Proof ii 2.75ms™!

z 0.128mor12.560 5 i T=625N,Proof ii 4.90ms!

1
2 Ll 3 i A=10N ii 1.12ms™!
4  SmgN
5 1.93m
6 A=769N .
Prerequisite knowledge

7 a Proof b 7V3gN 1 a 128
8 u =§, =120 b —1{:0341‘ +c

4 4

ot atad
9 1.22m and 1.08 m ¢ e‘costr—e st

2ka 3 [2 =
10 a — b k:— — =45 = 2e ¥ +¢
3 7 2 a v 3t + 2¢ b v=e

Exercise 16B Exercise 17A
1 a 4.17] b 2m ¢ 250N 1 i VZ72ms‘1,a=66ms‘2
2 Proof b v=-3ms"}, a=4ms?
3 1=625N,EPE=167J ¢ v=725ms™", a=1.6875ms?
=]
10
3 4
5 134.6] 9
6 a Proof b k=2 4 x=3—%, cannot exceed 3m
-1
7 a ldm b 24.5J 5 78ms
o 8 e Lo
8 a 1—1765—51 b %mga] 8 w=3 3t,x_3t 12t



T =2

8  No, takes 136.8m to stop.

9 9.65m
g
10 Proof, vy ==
k
11 a +v6s,0or245s b 19.59m
12 a Proof b 25ms™! ¢ 115m

Exercise 17B

1 a v=‘/%x3+6x+k

b v=veX®-x>+k
2
c v=]/6x+f+k
2 6V2ms™!
3 v=v3x2+25ms™!
4  0.0671ms™!
5 v=+v3e¥422 vV2ms!
6 4.19ms™!
7 V=6x+2x2+4
40
§ g=
“ On
9 a v=\/32sin-;£+49 b V17ms™!
3 1 27
10 = R S St sl
PEVF RS

End-of-chapter review exercise 17

1 i x=25m,v=6.12ms™! ii g=—-15ms>2

2 i Proof ii Proof iii 49.7m

3 i 0.2511ﬂ ==(5-x) i x=51-e¢%
dx

18 Momentum

Prerequisite knowledge
1 v.=6V3ms!and v, =6ms!

2 10571

Exercise 18A

1 7 _ 8
vp—gu, vq_gu
2 v=§u
)
3, oLy
16
4
4 <—
¢<3
1 225
5 =—, KElost===]J
T3
1
6 e=-
€53
7 a Proof b e=l,vp:0
2
Exercise 18B
1 0901w
2 EmuzJ
32
2
] .=
T
4 4.]1°
5 a Proof b Q—muzJ
200
6 v =36ms! v;=04ms’, ve=-1.6ms],
No more collisions
7  Final velocity is eu
8 é1"
5
828
9 il
625
10 -2y
100

End-of-chapter review exercise 18

1

2

3

4 +a
e =

, Proof
3a

3
V4 —Eu, VB—ZU, ga

Proof
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7 YA
6,
1 e:g,ém@ 54
33 I,
2 a 0.25m b Im ¢ Proof 3]
2_
3 202 from AB, Gk a from BC
24 + 3 8+ m =
b 24.6° 320 1 93 4 57
4 a Proof b Proof c o ,
k 8 7
| 81
5 a %a b 2.06Vga L 7]
6 a 552m b 0.536s 55_
¢ 32.5° above the horizontal P4
3]
7 a VP:E(2—36),VQ=23(1+8) EZ-
5 5 2 |l ")
2 3Imu ‘
b e<= 1-¢é — >
¢<3 ¢ S( ) 4 3219 1 2 3 4%

9 In3,-In5
Prerequisite knowledge | 4
10 In— In-
1 Proof 2 3
2 x=In3 i 1n(3—«/§)’ ln(3+\@)
2 2
Exercise 19A .
3 Exercise 19B
1 ln(g) 1 Proof
2 1n(4), 1n(§) 2 Proof
3 3
1 3  Proof
3 Yog| —(8+ 497
og(33( e )) 4 a Proof b Proof ¢ Proof
4 ln(%) 5 Proof
Exercise 19
5 —In2 or ln(;) ercise 19C |
1 a Im(3+v10) b 5’111(5) ¢ In(2)
6 =
2 a ln(m—S),ln( 103_ l)
b 0
™ (1 + \/5)
7 I C ]1‘1
1 2 2

3 Proof
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1
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Hy: Recall for visual and aural is the same
H;: Recall from visual is better than aural.

Test statistic: $* = 9(S~ = 3)
P(S* > 9) = 0.072998
Do not reject Hy:

Objects presented visually are not recalled more
accurately than objects presented aurally.

a Hj: There is no difference between the
population medians of the two departments
H;: There is a difference between the
population medians of the two departments
m=7n=38§

R, =175
mn+m+1)— R, =37
W =37

Critical value = 38

Sufficient evidence to reject Hy: There is a
difference in the population medians of the
two departments.

b A normal approximation can be used with
BE(T)y= 2525
Var(T) = 21042
T =~ N(2525, 21042)

.

a E(X):3

, Var(X) =§

1
b Gz(f) = W(Z =+ f)g

¢ E(Z)=3,Var(Z)=2

Hy: No association between gender and facilities

used
H;: An association between gender and facilities
used

p ((0 ;E)Z) =127

£5(0.95) = 5.991

Reject Hy:

There is an association between gender and the
facilities used at the hotel.

5 a 4297

fO x<0
%y(s 53 0<x<2
b F(x):{%(7x+18) 2€x<6
1
B2 — S
20 (30x 69) x=6
\0 otherwise
¢ Median = %Q

Further Mechanics practice

exam-style paper

1 Speed 18.8ms™! and direction angle 22.9° below
the horizontal.

2 493°
4 1
3 a r=lu—_4 b = (9mu)?
3m
4 a Proof b V3ga<u<]f12—5ga
5 a x= —-~52x w= 0
37 3
b 06125
9 3 e e i
6 a y= ?u, vp = —Eu, opposite directions
b 22y ¢ BN
28 7

Further Pure Mathematics 2
practice exam-style paper

1 y=secxInsinx+ csecx

2
12
1 -2 1 : 0
3 a0 3 2 2
0 0a-4 : b-2
b a#4,beR
¢c a=4,b=2
d a=4,b+#2
4 13

5  Proof, In(3 + v8), In(2 + V3)




Glossary

x’-test: a test that can be used to look for the association
between two sets of categorical data, or to perform a
goodness of fit test

p. the Greek letter rho: density (pronounced ‘row” (spelt rho))

A
Acceptance region: the values of the test statistic for which
we do not reject the null hypothesis

Angle of depression: the angle formed by the line of

sight and the horizontal plane for an object below the
horizontal

Angle of elevation: the angle formed by the line of sight
and the horizontal plane for an object above the horizontal

Angular speed: the velocity of a body rotating about a
fixed point, measured as the rate of change of the angle
turned per unit of time

Arithmetic sequence: a sequence in which each successive
term is obtained by adding the same constant value

Asymptote: a line that a curve tends towards

Augmented matrix: a matrix that is formed by combining
the columns of two matrices

Auxiliary equation: an algebraic equation of degree # that
is based upon an nth degree differential equation

B

Barycentre: the point between two objects, such as planets,
where the objects are perfectly balanced with each other

Boundaries: limiting or bounding lines

Boundary conditions: a set of conditions that limit the
possible solutions of differential equations

Breaking equilibrium: when the net force on an object is no
longer zero

C
Cardioids: a type of polar curve that is heart shaped

Catenary: a naturally occuring shape observed in cases
such as telephone cables and rope bridges, modelled by the
hyperbolic cosine function

Cayley-Hamilton theorem: states that every square matrix
satisfies its own characteristic equation

Centre of mass: the point at which the entire mass of a
body may be considered

Characteristic equation: the polynomial of degree n that
relates to the eigenvalues of a square matrix

Chi-squared: a family of distributions which are used to
test association and goodness of fit

Circular functions: sine, cosine and tangent are called
circular functions as they are derived from the unit circle
Circular motion: motion that occurs about a fixed point
where the distance is constant

Coalesce: when two objects join together upon collision:
occurs when there is zero elasticity between the objects
Coefficient of restitution: the measure of how elastic the
collision is between two objects

Column: a vertical collection of terms, such as in a matrix
Common perpendicular: when two or more lines or planes
are such that a vector is at right angles to both of them
Comparison test: the use of a similar sum to compare
against the original; this comparative sum is known to
converge or diverge

Complementary function (CF): the general solution of the
auxiliary equation of a linear differential equation
Composite: made up of several different parts or elements
Compressed: reduced in size due to external forces
Confidence interval: an interval for which there is a given
probability that the population mean lies within that interval
Conic section: a special curve created by cutting through a
right circular cone with a plane

Conical pendulum: a pendulum that performs horizontal
circles about a centre that is vertically below where the
string is attached

Conservation of energy: the total energy of an isolated
system remains constant throughout the motion
Constraint: a rule or condition

Contingency table: a two-way table to display categorical
data used in a chi-squared test

Convergent: a series is convergent if the sequence of its
partial sums approaches a limit

Convolution theorem: in statistics, a theorem that allows
evaluation of the probability generating function of the
sum of two independent discrete random variables

Cross product: two vectors, u and v, are crossed to form a
vector that is perpendicular to both uw and v

Cube roots of unity: the three roots of the cubic

equation z° — 1 =0

Cubic equation: a polynomial with a leading term of power 3
Cumulative distribution function: a function that relates
probability to the area under the graph for a probability
density function that defines a continuous random
variable

Cusp: a point on a curve at which two branches meet such
that their tangents are equal
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D
Deformation: the altering of the shape of an object

Degrees of freedom: the number of independent pieces of
information that contribute to the estimate of a parameter

Denominator: the bottom portion of a fraction

Derivative: a function or value obtained from differentiating
the original function

Determinant: a value obtained from the elements of a
square matrix, usually used to represent the scaling factor
from a transformation

Diagonalisable: a square matrix is known to be diagonalisable
if it is similar to a diagonal matrix

Differential equation: an equation that contains the
original function and at least the first derivative; the order
of the differential equation is determined by the highest
derivative in the equation

Differentiation: the process of finding the gradient
function

Directly proportional: a relationship between two variables
such that they increase in the same ratio

Discontinuity: a point on a curve in which f(a) does not
exist; a gap exists in the curve

Discrete uniform distribution: a distribution in which the
random variable takes specific values, and each value has
an equal probability

Discriminant: a function obtained from the coefficients of
a polynomial, allowing the deduction of the number of
roots of the polynomial in question

Displacement: the position of an object relative to its
starting point, measured as a vector

E

Eigenvalue: a value obtained from solving the characteristic
equation of a square matrix

Eigenvector: a vector that maps to a factor of itself when a
matrix is applied to it, the direction being unchanged
Elastic: a material that has the ability to stretch beyond its
natural length when a force is applied to it

Elastic potential energy (EPE): the energy stored in an
elastic body that has been stretched or compressed

Element: a value in a matrix

Ellipse: a curve surrounding two focal points, where the
sum of the distances of a point on the curve to these two
focal points is always constant

Energy: the measure of mechanical energy stored in a
system, comprising kinetic energy, potential energy and
elastic potential energy

Enlargement: a transformation that increases or decreases
the area or volume of an existing shape, a stretch along all
coordinate axes

Equilibrium: a state in which the resultant forces on an
object are zero

Extension: the extra length created when an elastic object
is stretched beyond its natural length

F

Free variable: a variable that does not correspond to a
pivot column in a row reduced matrix

Frustum: a right circular cone with a smaller right circular
cone cut off by slicing the cone to give a larger and smaller
circular face

G

General solution (GS): a solution to a differential equation
with undetermined constants

H

Homogeneous differential equation: a differential equation
that includes terms in only one unknown function, e.g. y,

o dy dy _ :

and its derivatives, e.g. —, ——. It is possible to arrange
dx dxz

the terms to give zero on one side of the equation

Hooke’s law: a law that relates the extension of a string or
spring, or the compression of a spring, to the force applied

Hyperbola: a curve surrounding two focal points, where
the difference of the distances of a point on the curve to
these two focal points is always constant

Hyperbolic function: hyperbolic functions are derived from
the unit hyperbola

Hyperbolic identities: relationships between hyperbolic
functions similar to their trigonometric equivalents

I

Implicit: a function or expression that is not expressed
directly in terms of independent variables

Impulse: a force applied over a given time interval

Induction: a method of proof in which a base case 1s

shown to be true, then successive steps are shown also to

be true, completing the proof

Inertia: the resistance of any physical object to change its

current state of motion

Inextensible: a spring or string that cannot be stretched

beyond its natural length

Inhomogeneous differential equation: a differential

equation that can include terms in two different functions.
dy dzy

Moving all the terms in one function, e.g, ——, —, to one
dx dx?

side of the equation leaves a function, e.g. f(x), on the
other side instead of zero

Initial conditions: values that are defined or stated when
the modelling of an observation is set in motion

Intersection: the point at which two or more objects, or
functions, meet



Invariant: a point, or a set of points, that never change
their value

Inverse matrix: a square matrix that can be multiplied by
the original matrix to produce an identity matrix

Iteration: a repeat of a mathematical procedure applied to
the result of a previous iteration

L

Lamina: a 2-dimensional surface with both mass and
density

Limiting friction: a maximum value of static friction for
which motion is impeded

Line of intersection: a line that is common to two or more
planes in 3-dimensional space

Linear motion: motion that occurs in a straight line; it can
be described with one spatial dimension

Logarithmic form: meaning that the answer should be
written in exact form, using logarithms, usually In

M

Matrix (plural: matrices): a rectangular array that consists
of elements that are numbers or expressions, arranged in
rows and columns

Model: an equation or system of equations that are used
to closely resemble an observed phenomenon

Modulus of elasticity: a value that measures the resistance
of an object to being stretched or compressed

Moment: a turning effect produced by a force acting at a
distance on an object

Momentum: the quantity of motion of a moving body,
measured as a product of its mass and velocity

N
Natural length: the original length of a spring or string
before any forces act upon it

Newton’s equations of motion: the set of equations that
govern motion where the acceleration is constant

Newton’s experimental law: a law that relates the velocities
of two objects before and after collision

Non-parametric test: a test that does not require knowledge
of the underlying distribution

Non-singular matrix: a matrix that has a non-zero
determinant and an inverse

nth roots of unity: the n solutions of the complex equation
=1

0]

Oblique: a type of asymptote that is neither horizontal nor
vertical

Obligue collision: a collision in which the line of centres of
the two objects is not parallel to both the objects’ direction
of motion

Glossary

Order (of a matrix): the order of a matrix is the size of the
matrix defined by the number of rows (m) and columns (n)
and written m X n

Osborne’s rule: a rule that changes trigonometrical
identities to hyperbolic identities

P

Parabola: a plane curve formed by intersecting a right
circular cone with a plane that is parallel to the generator
of the cone

Parabolic trajectory: a trajectory modelled by motion

in a 2-dimensional plane for which the acceleration is
constant

Particle: a small point mass used to represent a larger
object

Particular integral (PI): a function used to convert
inhomogeneous equations to homogeneous equations
Particular solution: a solution generated by given initial or
boundary conditions

Percentile: a measure indicating the value below which a
given percentage of observations in a group of observations
fall

Perfectly elastic: a collision between two particles in which
no kinetic energy is lost

Piecewise function: a function which is defined by several
sub-functions, each applying to a certain interval of the
domain

Polar coordinates: a 2- or 3-dimensional system for which
the distance from the origin and the angle turned through
are ordinates

Polynomial: a function consisting of many terms of a
variable, with each term having a different non-negative
integer power

Position vector: a vector that measures displacement from
a given origin

Primitive: the inverse of a derivative, an indefinite integral
Probability density function: a function that describes the
relative likelihood for the random variable to take on a
given value

Probability generating function: a function that describes
the probability of the discrete variable having a value, but
in the form of a polynomial

Projectile: a particle or object that, once thrown, continues
to move under its own inertia and the force of gravity

Q

Quadratic: a polynomial with a leading term of power 2
Quartic: a polynomial with a leading term of power 4

R

Rational function: an algebraic fraction in which the
numerator and the denominator are polynomials
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Reduced row echelon form: a matrix that has only the
leading diagonal of elements that are non-zero
Reduction: a way of simplifiying an integral through
integration by parts and a recurrence relation

Reflection: a transformation in which all points in the
image are equidistant from a mirror line with their original
positions

Rigid body: a body that remains in equilbrium in all directions
Root: a solution of an equation

Rotation: a transformation in which a plane figure rotates
about a fixed point

Row: a horizontal collection of terms, such as in a matrix

Row echelon form: a matrix that has a lower triangle of
zeros and a leading diagonal of non-zero elements

S

Scalar equation of a plane: the standard definition of a
plane, written in the formr-n=a-n

Scalar product: the result of projecting the length of one
vector parallel to the direction of another vector

Sequence: a set of mathematically ordered values or terms
Series: the sum of the terms of a sequence

Shearing: each point in a shape is displaced by an amount
that is proportional to its distance from a fixed parallel
invariant line

Singular matrix: a matrix that has a zero determinant, and
as a consequence it cannot be inverted

Stretch: a type of transformation in which curve, or shape
has either its x or y values changed by a scale factor

T

Top-heavy fraction: a fraction where the numerator’s
algebraic expression is the same degree or higher than that
of the denominator’s expression

Turning point: a point on a curve at which the gradient 18
equal to zero and where the gradient is of a different sign
on either side of the turning point

U

Uniform: identical or consistent throughout

Unit hyperbola: a curve with the equation x* — y* =1
Unit vector: a vector of magnitude |

Y
Vector determinant: see Determinant

Vector equation of a line: the vector representation of a
line, written in the formr =a + b?

Vector equation of a plane: the vector representation of a
plane, written in the formr =a + bs + ¢/

Vector product: the crossing of two vectors to create a
common perpendicular vector, also known as the cross
product

zZ

7Zero matrix: a matrix that has all its elements as zeros



